

A144521


Tetrahedral numbers k*(k+1)*(k+2)/6 such that exactly one of k, k+1, and k+2 is prime.


1



0, 20, 56, 84, 165, 220, 364, 455, 680, 816, 1140, 1330, 1771, 2024, 2300, 3654, 4060, 4960, 5456, 7770, 8436, 9139, 10660, 11480, 13244, 14190, 16215, 17296, 18424, 23426, 24804, 26235, 32509, 34220, 37820, 39711, 47905, 50116, 52394, 57155
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS



EXAMPLE

k=0: Of the three numbers (0,1,2), exactly one is prime, so 0*1*2/6 = 0 is in the sequence.
k=1: Of the three numbers (1,2,3), exactly two are prime, so 1*2*3/6 = 1 is not in the sequence.
k=4: Of the three numbers (4,5,6), exactly one is prime, so 4*5*6/6 = 20 is in the sequence.


MAPLE

isPr := proc(n) if isprime(n) then 1; else 0; end if; end proc: for n from 0 to 300 do if isPr(n)+isPr(n+1)+isPr(n+2) = 1 then printf("%d, ", n*(n+1)*(n+2)/6 ) ; end if; end do: # R. J. Mathar, May 01 2010


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS

Corrected (455, 14190, 17296 inserted, 16560 removed etc.) by R. J. Mathar, May 01 2010


STATUS

approved



