login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} (n+k+3)!/((n-k)!*k!*2^k).
3

%I #14 Jul 27 2019 12:52:38

%S 6,84,1050,13980,205800,3368316,61075854,1219445100,26635157010,

%T 632479986600,16235529291696,448220024574504,13247429692101150,

%U 417453231024613140,13974133833217747650,495278130521939366196,18530507890959175097784,729908595489477119015700

%N a(n) = Sum_{k=0..n} (n+k+3)!/((n-k)!*k!*2^k).

%H Seiichi Manyama, <a href="/A144514/b144514.txt">Table of n, a(n) for n = 0..401</a>

%F a(n) ~ 2^(n + 7/2) * n^(n+3) / exp(n-1). - _Vaclav Kotesovec_, Apr 07 2019

%p f3:=proc(n) local k; add((n+k+3)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f3(n),n=0..50)];

%t Table[Sum[(n+k+3)!/((n-k)!k! 2^k),{k,0,n}],{n,0,20}] (* _Harvey P. Dale_, Jul 27 2019 *)

%o (PARI) {a(n) = sum(k=0, n, (n+k+3)!/((n-k)!*k!*2^k))} \\ _Seiichi Manyama_, Apr 07 2019

%Y Equals 6*A144506 (with a different offset).

%Y Cf. A001515, A144498, A144513.

%K nonn

%O 0,1

%A _N. J. A. Sloane_, Dec 16 2008