login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144474
A triangle sequence of determinants: a(n)=If[Mod[n, 2] == 0, 1, If[Mod[n, 2] == 1, -1, 0]]; b(n,m)=If[m < n && Mod[n, 3] == 0, 0, If[m < n && Mod[n, 3] == 1, 0, If[m < n && Mod[n, 3] == 2 && Mod[n, 2] == 0, 1, If[m < n && Mod[n, 3] == 2 && Mod[n, 2] == 1, -1, If[m == n, -1, 0]]]]]; M={{a(m), b(n, m)}, {a(n), b(n, n)}}; t(n,m)=Det[M].
0
-1, -2, 0, -1, 1, -1, -1, 1, -1, 1, -2, 0, -2, 0, -2, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -2, 0, -2, 0, -2, 0, -2, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1
OFFSET
1,2
COMMENTS
Row sums are:{-1, -2, -1, 0, -6, 0, -1, -8, -1, 0}.
FORMULA
a(n)=If[Mod[n, 2] == 0, 1, If[Mod[n, 2] == 1, -1, 0]]; b(n,m)=If[m < n && Mod[n, 3] == 0, 0, If[m < n && Mod[n, 3] == 1, 0, If[m < n && Mod[n, 3] == 2 && Mod[n, 2] == 0, 1, If[m < n && Mod[n, 3] == 2 && Mod[n, 2] == 1, -1, If[m == n, -1, 0]]]]]; M={{a(m), b(n, m)}, {a(n), b(n, n)}}; t(n,m)=Det[M].
EXAMPLE
{-1},
{-2, 0},
{-1, 1, -1},
{-1, 1, -1, 1},
{-2, 0, -2, 0, -2},
{-1, 1, -1, 1, -1, 1},
{-1, 1, -1, 1, -1, 1, -1},
{-2, 0, -2, 0, -2, 0, -2, 0},
{-1, 1, -1, 1, -1, 1, -1, 1, -1},
{-1, 1, -1, 1, -1, 1, -1, 1, -1, 1}
MATHEMATICA
Clear[a, b, t, n, m] a[n_] := If[Mod[n, 2] == 0, 1, If[Mod[n, 2] == 1, -1, 0]]; b[n, m_] := If[m < n && Mod[n, 3] == 0, 0, If[m < n && Mod[n, 3] == 1, 0, If[m < n && Mod[n, 3] == 2 && Mod[n, 2] == 0, 1, If[m < n && Mod[n, 3] == 2 && Mod[n, 2] == 1, -1, If[m == n, -1, 0]]]]]; M = {{a[m], b[n, m]}, {a[n], b[n, n]}}; t[n_, m_] := Det[M]; Table[Table[t[n, m], {m, 0, n - 1}], {n, 1, 10}]; Flatten[%]
CROSSREFS
Sequence in context: A327406 A336865 A262257 * A298602 A203949 A070200
KEYWORD
sign,uned
AUTHOR
STATUS
approved