Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Mar 04 2022 01:28:14
%S 1,1,1,1,17,1,1,118,118,1,1,729,2681,729,1,1,4400,41745,41745,4400,1,
%T 1,26431,555240,1349245,555240,26431,1,1,158622,6816846,33456685,
%U 33456685,6816846,158622,1,1,951773,80034743,715321156,1411926995,715321156,80034743,951773,1
%N Triangle read by rows: T(n, k) = (5*n-5*k+1)*T(n-1, k-1) +(5*k-4)*T(n-1, k) + 5*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
%H G. C. Greubel, <a href="/A144442/b144442.txt">Rows n = 1..50 of the triangle, flattened</a>
%F T(n, k) = (5*n-5*k+1)*T(n-1, k-1) +(5*k-4)*T(n-1, k) + 5*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
%F Sum_{k=1..n} T(n, k) = s(n), where s(n) = (5*n-8)*s(n-1) + 5*s(n-2), with s(1) = 1, s(2) = 2.
%F From _G. C. Greubel_, Mar 03 2022: (Start)
%F T(n, n-k) = T(n, k).
%F T(n, 2) = (1/5)*(17*6^(n - 2) - (5*n + 2)).
%F T(n, 3) = (1/50)*(25*n^2 - 5*n - 31 - 34*6^(n - 3)*(30*n - 13) +
%F 2489*11^(n - 3)). (End)
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, 17, 1;
%e 1, 118, 118, 1;
%e 1, 729, 2681, 729, 1;
%e 1, 4400, 41745, 41745, 4400, 1;
%e 1, 26431, 555240, 1349245, 555240, 26431, 1;
%e 1, 158622, 6816846, 33456685, 33456685, 6816846, 158622, 1;
%e 1, 951773, 80034743, 715321156, 1411926995, 715321156, 80034743, 951773, 1;
%t T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]];
%t Table[T[n,k,5,5], {n,12}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 03 2022 *)
%o (Sage)
%o def T(n,k,m,j):
%o if (k==1 or k==n): return 1
%o else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
%o def A144442(n,k): return T(n,k,5,5)
%o flatten([[A144442(n,k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Mar 03 2022
%Y Cf. A144431, A144432, A144435, A144436, A144438, A144439, A144440, A144441, A144443, A144444, A144445.
%K nonn,tabl
%O 1,5
%A _Roger L. Bagula_ and _Gary W. Adamson_, Oct 05 2008