login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form prime(k) - 2*k (terms can be repeated).
2

%I #22 Nov 24 2024 03:38:07

%S 3,3,5,13,17,29,31,31,37,41,47,53,67,71,71,79,79,83,89,97,97,107,107,

%T 127,131,151,181,197,211,229,241,257,257,269,271,281,283,283,311,353,

%U 373,389,401,409,409,419,419,431,449,463,479,491,499,547,563,577,577

%N Primes of the form prime(k) - 2*k (terms can be repeated).

%H Robert Israel, <a href="/A144419/b144419.txt">Table of n, a(n) for n = 1..10000</a>

%e For k=7, prime(7) - 2*7 = 17 - 14 = 3 = a(1).

%e For k=8, prime(8) - 2*8 = 9 - 16 = 3 = a(2).

%e For k=9, prime(9) - 2*9 = 23 - 18 = 5 = a(3).

%e For k=12, prime(12) - 2*12 = 37 - 24 = 13 = a(4).

%e For k=15, prime(15) - 2*15 = 47 - 30 = 17 = a(5).

%e For k=19, prime(19) - 2*19 = 67 - 38 = 29 = a(6).

%e For k=20, prime(20) - 2*20 = 71 - 40 = 31 = a(7).

%p select(isprime, [seq(ithprime(k)-2*k,k=1..1000)]); # _Robert Israel_, Nov 24 2024

%Y Cf. A000040, A179437.

%K nonn

%O 1,1

%A _Juri-Stepan Gerasimov_, Oct 07 2008

%E A 181 replaced with 281 by _R. J. Mathar_, Apr 14 2010