OFFSET
1,4
COMMENTS
Appears to be essentially the same as a sequence in Section 2.2 of Baril-Ramirez. - N. J. A. Sloane, Feb 18 2024
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
Jean-Luc Baril and José L. Ramírez, Knight's paths towards Catalan numbers, Univ. Bourgogne Franche-Comté (2022). Also arXiv:2206.12087, Jan 2023.
N. J. A. Sloane, Transforms
FORMULA
G.f.: x + x^2 * (1 + Sum_{i>=1} Sum_{j>=1} a(i)*a(j)*x^(i*j)). - Ilya Gutkovskiy, May 09 2019
MAPLE
k:= 2: with(numtheory): dck:= proc(b, c) proc(n, k) option remember; add(b(d, k) *c(n/d, k), d=`if`(n<0, {}, divisors(n))) end end: B:= dck(T, T): T:= (n, k)-> if n<=k then 1 else B(n-k, k) fi: a:= n-> T(n, k): seq(a(n), n=1..50);
MATHEMATICA
k = 2; dck[b_, c_][n_, k_] := dck[b, c][n, k] = DivisorSum[n, b[#, k] * c[n/#, k]&]; B = dck[T, T]; T[n_, k_] := If[n <= k, 1, B[n-k, k]]; a[n_] := T[n, k]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Apr 05 2017, translated from Maple *)
CROSSREFS
KEYWORD
eigen,nonn
AUTHOR
Alois P. Heinz, Sep 18 2008
STATUS
approved