login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144326 Prime numbers that cannot be Mersenne prime exponents, by conjecture of A144325. 1
67, 191, 197, 211, 277, 331, 379, 397, 401, 541, 617, 631, 677, 727, 743, 751, 821, 937, 947, 971, 991, 1129, 1163, 1171, 1217, 1277, 1289, 1327, 1381, 1409, 1427, 1471, 1549, 1559, 1597, 1601, 1607, 1783, 1801, 1831, 1871, 1901, 2011, 2017, 2081, 2111 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Obviously true for the initial terms!
Conjecture: 191, 1217, 1559 and 1901 are not in fact members of this sequence, noting that they are (4, 19) k-figurate numbers; 19 is a member of A138694. Determining whether a Mersenne prime exponent one greater than a (4, 19) k-figurate number exists is sufficient to determine whether these primes are members.
LINKS
CROSSREFS
Sequence in context: A142544 A259888 A142671 * A119593 A142891 A142049
KEYWORD
easy,nonn
AUTHOR
Reikku Kulon, Sep 17 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 17:07 EST 2023. Contains 367500 sequences. (Running on oeis4.)