login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular numbers n*(n-1)/2 with n and n -1 nonprime.
5

%I #10 Mar 27 2019 09:53:20

%S 0,36,45,105,120,210,231,300,325,351,378,528,561,595,630,741,780,990,

%T 1035,1176,1225,1275,1326,1485,1540,1596,1653,1953,2016,2080,2145,

%U 2346,2415,2775,2850,2926,3003,3240,3321,3570,3655,3741,3828,4095,4186,4278

%N Triangular numbers n*(n-1)/2 with n and n -1 nonprime.

%H Robert Israel, <a href="/A144291/b144291.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A000217(A068780(n-1)), n>1. - _R. J. Mathar_, Dec 10 2008

%e If n=1, then 1*(1-1)/2=0=a(1).

%e If n=9, then 9*(9-1)/2=36=a(2).

%e etc.

%p p:= -1: Res:= NULL: count:= 0:

%p while count < 100 do

%p q:= p; p:= nextprime(p);

%p if p - q > 2 then

%p count:= count + p-q-2;

%p Res:= Res, seq(k*(k+1)/2, k=q+1..p-2);

%p fi

%p od:

%p Res; # _Robert Israel_, Jul 03 2018

%t Reap[For[n = 1, n <= 100, n++, If[!PrimeQ[n] && !PrimeQ[n-1], Sow[n(n-1)/2] ] ] ][[2, 1]] (* _Jean-François Alcover_, Mar 27 2019 *)

%Y Cf. A000040, A000217, A068780, A141468.

%K nonn

%O 1,2

%A _Juri-Stepan Gerasimov_, Dec 01 2008

%E 3570 inserted by _R. J. Mathar_, Dec 10 2008