Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Sep 07 2013 13:44:13
%S 1,1,1,1,3,2,1,5,12,6,1,7,30,60,24,1,9,56,210,360,122,1,11,90,504,
%T 1680,2562,758,1,13,132,990,5040,15372,21224,5606,1,15,182,1716,11880,
%U 36364,159180,201816,47378
%N Eigentriangle, row sums = A144251 shifted, right border = A144251.
%C Right border = A144251: (1, 1, 2, 6, 24, 122, 758,...) with row sums = the same sequence shifted. Sum of n-th row terms = rightmost term of next row.
%F Eigentriangle by rows, T(n,k) = A054142(n,k) * A144251(k); were A144251 = the eiegensequence of triangle A054142.
%e First few rows of the triangle =
%e 1;
%e 1, 1;
%e 1, 3, 2;
%e 1, 5, 12, 6;
%e 1, 7, 30, 60, 24;
%e 1, 9, 56, 210, 360, 122;
%e 1, 11, 90, 504, 1680, 2562, 758;
%e 1, 13, 132, 990, 5040, 15372, 21224, 5606;
%e ...
%e The triangle is generated from A054142 and its own eigensequence, (A144251), where A054142 =
%e 1;
%e 1, 1;
%e 1, 3, 1;
%e 1, 5, 6, 1;
%e 1, 7, 15, 10, 1;
%e ...
%e The eigensequence of A054142 = A144251: (1, 1, 2, 6, 24, 122, 758, 5606,...);
%e Example: row 3 of A144252 = (1, 5, 12, 6) = termwise products of (1, 5, 6, 1) and (1, 1, 2, 6) = (1*1, 5*1, 6*2, 1*6).
%Y A144251, Cf. A054142, A125273, A085478
%K nonn,tabl
%O 0,5
%A _Gary W. Adamson_, Sep 16 2008