%I #29 Jan 26 2024 15:13:49
%S 1,1,1,1,1,2,2,1,2,4,4,2,2,4,9,9,4,4,4,9,21,21,9,8,8,9,21,51,51,21,18,
%T 16,18,21,51,127,127,51,42,36,36,42,51,127,323,323,127,102,84,81,84,
%U 102,127,323,835,835,323,254,204,189,189,204,254,323,835,2188
%N Equals product A*B, where A is an infinite lower triangular matrix with A086246 in every column and B is the diagonal matrix with A001006 as diagonal.
%C Right border is A001006.
%C Row sums give A001006 without the initial 1.
%C Left border is A086246 (A001006 with an additional leading 1).
%C Sum of n-th row terms = rightmost term of next row.
%H Paul Barry, <a href="http://arxiv.org/abs/1107.5490">Invariant number triangles, eigentriangles and Somos-4 sequences</a>, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
%e First few rows of the triangle:
%e 1;
%e 1, 1;
%e 1, 1, 2;
%e 2, 1, 2, 4;
%e 4, 2, 2, 4, 9;
%e 9, 4, 4, 4, 9, 21;
%e 21, 9, 8, 8, 9, 21, 51;
%e 51, 21, 18, 16, 18, 21, 51, 127;
%e 127, 51, 42, 36, 36, 42, 51, 127, 323;
%e 323, 127, 102, 84, 81, 84, 102, 127, 323, 835;
%e 835, 323, 254, 204, 189, 189, 204, 254, 323, 835, 2188;
%e ...
%e Row 4 = (4, 2, 2, 4, 9) = termwise products of (4, 2, 1, 1, 1) and (1, 1, 2, 4, 9) = (4*1, 2*1, 1*2, 1*4, 1*9).
%t nmax = 10;
%t T[0, 0] = T[1, 0] = 1;
%t T[n_, 0] := Hypergeometric2F1[3/2, 1-n, 3, 4] // Abs;
%t T[n_, n_] := Hypergeometric2F1[(1-n)/2, -n/2, 2, 4];
%t row[n_] := row[n] = Table[T[m, 0], {m, n, 0, -1}]*Table[T[m, m], {m, 0, n} ];
%t T[n_, k_] /; 0<k<n := row[n][[k+1]];
%t Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Aug 07 2018 *)
%Y Cf. A001006, A086246.
%K nonn,tabl
%O 0,6
%A _Gary W. Adamson_, Sep 14 2008
%E Edited by _Joerg Arndt_, Jan 26 2024