Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Aug 21 2016 11:10:09
%S 1,1,3,9,11,17,35,57,91,161,275,457,779,1329,2243,3801,6459,10945,
%T 18547,31465,53355,90449,153379,260089,440987,747745,1267923,2149897,
%U 3645387,6181233,10481027,17771801,30134267,51096321,86639923,146908457,249101099
%N INVERT transform of A118434, = row sums of triangle A144182.
%C A118434 = row sums of the self-inverse triangle A118433 (a generator for the Rao Uppuluri-Carpenter numbers, A000587).
%C A144181 = row sums of triangle A144182.
%H Colin Barker, <a href="/A144181/b144181.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2).
%F Equals row sums of triangle A144182 and INVERT transform of A118434: (1, 0, 2, 4, -4, 0, -8, -16, 16, 0, 32,...).
%F From _Colin Barker_, Aug 21 2016: (Start)
%F a(n) = a(n-1)+2*a(n-3) for n>3.
%F G.f.: (1+2*x^2+4*x^3) / (1-x-2*x^3).
%F (End)
%e a(3) = 9 = sum of row 3 terms, triangle A144182: (4 + 2 + 0 + 3).
%o (PARI) Vec((1+2*x^2+4*x^3)/(1-x-2*x^3) + O(x^40)) \\ _Colin Barker_, Aug 21 2016
%Y Cf. A118434.
%Y Cf. A144182, A000587.
%K nonn,easy
%O 0,3
%A _Gary W. Adamson_, Sep 13 2008
%E More terms from _Alois P. Heinz_, May 23 2015