login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144178
a(n) = b(2n-1)*b(2n) where b(3n+1) = floor(n/9) + 2, b(3n+2) = (n mod 9) + 2, b(3n+3) = b(3n+1)*b(3n+2) for n >= 0.
2
4, 8, 18, 8, 16, 50, 12, 24, 98, 16, 32, 162, 20, 60, 12, 9, 27, 48, 15, 45, 108, 21, 63, 192, 27, 81, 300, 8, 32, 36, 16, 64, 100, 24, 96, 196, 32, 128, 324, 40, 200, 20, 15, 75, 80, 25, 125, 180, 35, 175, 320, 45, 225, 500, 12, 72, 54, 24, 144, 150, 36, 216, 294, 48, 288
OFFSET
1,1
COMMENTS
Old name was: (2*2=4, 2*3=6, 2*4=8, 2*5=10, 2*6=12, 2*7=14, 2*8=16, 2*9=18, 2*10=20, 3*2=6, ...) becomes (abs(2*2, 4*2, 3*6, 2*4, 8*2, 5*10, 2*6, 12*2, 7*14, 2*8, 16*2, 9*18, 2*10, 20*3, 2*6, ...)).
(..., 9*9=81, 9*10=90, 10*2=20, 10*3=30, 10*4=40, 10*5=50, 10*6=60, 10*7=70, 10*8=80, 10*9=90, 10*10=100, 11*2=22, ...) becomes
(abs(..., 9*9, 81*9, 10*90, 10*2, 20*10, 3*30, 10*4, 40*10, 5*50, 10*6, 60*10, 7*70, 10*8, 80*10, 9*90, 10*10, 100*11, 2*22, ...)).
EXAMPLE
2*2 = 4 = a(1),
4*2 = 8 = a(2),
3*6 = 18 = a(3),
2*4 = 8 = a(4),
8*2 = 16 = a(5),
5*10 = 50 = a(6), etc.
MATHEMATICA
Times @@@ Partition[Flatten@ Table[{n, k, n k}, {n, 2, 10}, {k, 2, 10}], 2, 2] (* Michael De Vlieger, Oct 24 2022 *)
PROG
(PARI) a(n) = my(k=ceil(n/27), r=n-27*(k-1), v=[]); for(i=2, 10, v=concat(v, [2*k, i, 2*k*i])); for(i=2, 10, v=concat(v, [2*k+1, i, (2*k+1)*i])); v[2*r-1] * v[2*r] \\ Jianing Song, Oct 24 2022
CROSSREFS
Sequence in context: A119471 A145779 A252790 * A075558 A312824 A312825
KEYWORD
nonn,less
AUTHOR
EXTENSIONS
Corrected (a 175 replaced by 225) by R. J. Mathar, Apr 29 2010
New name from Jianing Song, Nov 01 2022
STATUS
approved