login
IntegerPart(PolyGamma(n,1)).
1

%I #7 Feb 28 2013 10:00:36

%S 1,-2,6,-24,122,-726,5060,-40400,363240,-3630593,39926622,-479060379,

%T 6227402193,-87180957830,1307694352218,-20922949679481,

%U 355688785859223,-6402385922818921,121645216453639396,-2432903168507861321

%N IntegerPart(PolyGamma(n,1)).

%C Also equals (-1)^(n+1)*floor(n!*zeta(n+1)). [_Jean-François Alcover_, Feb 28 2013]

%t lst={};Do[AppendTo[lst,IntegerPart[PolyGamma[n,1]]],{n,4^3}];lst

%K sign

%O 1,2

%A _Vladimir Joseph Stephan Orlovsky_, Sep 12 2008