login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Period 6: repeat [2, 2, 2, 1, 1, 1].
1

%I #29 Mar 15 2024 02:19:45

%S 2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,

%T 1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,

%U 2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1

%N Period 6: repeat [2, 2, 2, 1, 1, 1].

%C a(n) = 2 for n = 0,1,2 modulo 6; a(n) = 1 for n = 3,4,5 modulo 6.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,-1,1).

%F G.f.: (1+2*x^3)/((1-x)*(1+x)*(1-x+x^2)); a(n) = 3/2-(-1)^n/6-A057079(n)/3. [_R. J. Mathar_, Sep 17 2008]

%F a(n) = a(n-1) - a(n-3) + a(n-4) for n>3; a(n) = 1 + mod(floor((-n-1)/3), 2); a(n) = A088911(n) + 1. - _Wesley Ivan Hurt_, Sep 04 2014

%F a(n) = (9 + cos(n*Pi) + 2*cos(n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3))/6. - _Wesley Ivan Hurt_, Jun 23 2016

%p A144110:=n->1+(floor((-n-1)/3) mod 2): seq(A144110(n), n=0..100); # _Wesley Ivan Hurt_, Sep 04 2014

%t Table[1 + Mod[Floor[(-n - 1)/3], 2], {n, 0, 100}] (* _Wesley Ivan Hurt_, Sep 04 2014 *)

%o (Magma) [1+(Floor((-n-1)/3) mod 2) : n in [0..100]]; // _Wesley Ivan Hurt_, Sep 04 2014

%o (PARI) a(n)=[2,2,2,1,1,1][n%6+1] \\ _Edward Jiang_, Sep 04 2014

%Y Cf. A057079, A088911, A135265.

%K nonn,easy

%O 0,1

%A _Philippe Deléham_, Sep 11 2008, Sep 15 2008