The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144097 The 4-Schroeder numbers: a(n) = number of lattice paths (Schroeder paths) from (0,0) to (3n,n) with unit steps N=(0,1), E=(1,0) and D=(1,1) staying weakly above the line y = 3x. 20

%I #92 Jan 09 2024 11:03:25

%S 1,2,14,134,1482,17818,226214,2984206,40503890,561957362,7934063678,

%T 113622696470,1646501710362,24098174350986,355715715691350,

%U 5289547733908510,79163575684710818,1191491384838325474

%N The 4-Schroeder numbers: a(n) = number of lattice paths (Schroeder paths) from (0,0) to (3n,n) with unit steps N=(0,1), E=(1,0) and D=(1,1) staying weakly above the line y = 3x.

%C a(n) is also the number of lattice path from (0,0) to (4n,0) with unit steps (1,3), (2,2) and (1,-1) staying weakly above the x-axis.

%C Also, the number of planar rooted trees with n non-leaf vertices such that each non-leaf vertex has either 3 or 4 children. - _Cameron Marcott_, Sep 18 2013

%C a(n) equals the number of ordered complete 4-ary trees with 3*n + 1 leaves, where the internal vertices come in two colors and such that each vertex and its rightmost child have different colors. See Drake, Example 1.6.9. - _Peter Bala_, Apr 30 2023

%D Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

%H Alois P. Heinz, <a href="/A144097/b144097.txt">Table of n, a(n) for n = 0..800</a>

%H D. Bevan, D. Levin, P. Nugent, J. Pantone, and L. Pudwell, <a href="http://arxiv.org/abs/1510.08036">Pattern avoidance in forests of binary shrubs</a>, arXiv preprint arXiv:1510.08036 [math.CO], 2015.

%H B. Drake, <a href="http://people.brandeis.edu/~gessel/homepage/students/drakethesis.pdf">An inversion theorem for labeled trees and some limits of areas under lattice paths (Example 1.6.9)</a>, A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.

%H Gi-Sang Cheon, S.-T. Jin, and L. W. Shapiro, <a href="http://dx.doi.org/10.1016/j.laa.2015.03.015">A combinatorial equivalence relation for formal power series</a>, Linear Algebra and its Applications, Available online 30 March 2015.

%H J. Schroeder, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Schroder/schroder45.html">Generalized Schroeder numbers and the rotation principle</a>, Journal of Integer Sequences 10(7).

%H R. A. Sulanke, <a href="http://www.fq.math.ca/Scanned/27-1/sulanke.pdf">A recurrence restricted by a diagonal condition: generalized Catalan arrays</a>, Fibonacci Q., 27 (1989), 33-46.

%H Lin Yang, Yu-Yuan Zhang, and Sheng-Liang Yang, <a href="https://doi.org/10.1016/j.laa.2023.12.021">The halves of Delannoy matrix and Chung-Feller properties of the m-Schröder paths</a>, Linear Alg. Appl. (2024).

%H Sheng-liang Yang and Mei-yang Jiang, <a href="https://journal.lut.edu.cn/EN/abstract/abstract528.shtml">Pattern avoiding problems on the hybrid d-trees</a>, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin; improperly cited as A144079)

%F G.f. A(z) satisfies A(z) = 1 + z(A(z)^3 + A(z)^4) a(n)= S_{3n+1}(n) - 3S_n(3n + 1), where S_a(b) are coordination numbers, i.e., the number of points in the a-dimensional cubic lattice Z^a having distance b in the L_1 norm.

%F Also a(n) = D(3n,n) - 3D(3n + 1,n-1) - 2D(3n,n-1), where D(a,b) are the Delannoy numbers, i.e., the number of paths with N, E and D steps from (0,0) to (a,b).

%F D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*(35*n^2-98*n+68) *a(n) +(-15610*n^5+67123*n^4-106824*n^3+77633*n^2-25514*n+3000)*a(n-1) +3*(n-2) *(3*n-4) *(3*n-5) *(35*n^2-28*n+5) *a(n-2)=0. - _R. J. Mathar_, Sep 06 2016

%F From _Seiichi Manyama_, Jul 25 2020: (Start)

%F a(n) = Sum_{k=0..n} binomial(n,k) * binomial(3*n+k+1, n)/(3*n+k+1).

%F a(n) = (1/n) * Sum_{k=1..n} 2^k * binomial(n,k) * binomial(3*n,k-1) for n > 0. (End)

%F a(n) ~ sqrt(12160 + 3853*sqrt(10)) * 3^(3*n - 9/2) / (2*sqrt(5*Pi) * n^(3/2) * (223 - 70*sqrt(10))^(n - 1/2)). - _Vaclav Kotesovec_, Jul 31 2021

%F Series reversion of x*(1 - x^3)/(1 + x^3) = x + 2*x^4 + 14*x^7 + 134*x^10 + ... = Sum_{n >= 0} a(n)*x^(3*n+1). - _Peter Bala_, Apr 30 2023

%F From _Peter Bala_, Jun 16 2023: (Start)

%F The g.f. A(x) = 1 + 2*x + 14*x^2 + 134*x^3 + ... satisfies A(x)^3 = (1/x) * the series reversion of ((1 - x)/(1 + x))^3.

%F Define b(n) = [x^(3*n)] ( (1 + x)/(1 - x) )^n = (1/3) * [x^n] ((1 + x)/(1 - x))^(3*n) = A333715(n). Then A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ).

%F a(n) = 2*hypergeom([1 - n, -3*n], [2], 2) for n >= 1. (End)

%F a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * 2^(n-k) * binomial(n,k) * binomial(4*n-k,n-1-k) for n > 0. - _Seiichi Manyama_, Aug 09 2023

%e a(2)=14, because

%e 01: NNNENNNE,

%e 02: NNDNNNE,

%e 03: NNNENND,

%e 04: NNDNND,

%e 05: NNNDNNE,

%e 06: NNNDND,

%e 07: NNNNENNE,

%e 08: NNNNEND,

%e 09: NNNNDNE,

%e 10: NNNNDD,

%e 11: NNNNNENE,

%e 12: NNNNNED,

%e 13: NNNNNDE,

%e 14: NNNNNNEE

%e are all the paths from (0,0) to (2,6) with steps N,E and D weakly above y=3x.

%p Schr:=proc(n,m,l)(n-l*m+1)/m*sum(2^v*binomial(m,v)*binomial(n,v-1),v=1..m) end proc; where n=3m and l=3, also

%p Schr:=proc(n,m,l)(n-l*m+1)/(n+1)*sum(2^v*binomial(m-1,v-1)*binomial(n+1,v),v=0..m) end proc; where n=3m and l=3, also

%p Schr:=proc(n,m,l)(n-l*m+1)/m*sum(binomial(m,v)*binomial(n+v,m-1),v=0..m) end proc; where n=3m and l=3, also

%p Schr:=proc(n,m,l)(n-l*m+1)/(n+1)*sum(binomial(n+1,v)*binomial(m-1+v,n),v=0..n+1) end proc; where n=3m and l=3.

%p # alternative Maple program:

%p a:= proc(n) option remember; `if`(n<2, n+1,

%p ((15610*n^5 -67123*n^4 +106824*n^3 -77633*n^2

%p +25514*n-3000)*a(n-1) -(3*(n-2))*(3*n-4)*

%p (3*n-5)*(35*n^2-28*n+5)*a(n-2)) / ((3*(3*n-1))

%p *(3*n+1)*n*(35*n^2-98*n+68)))

%p end:

%p seq(a(n), n=0..20); # _Alois P. Heinz_, May 26 2015

%t d[n_, k_] := Binomial[n+k, k] Hypergeometric2F1[-k, -n, -n-k, -1]; a[0] = 1; a[n_] = d[3n, n] - 3d[3n+1, n-1] - 2d[3n, n-1]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 25 2017 *)

%o (PARI) {a(n) = sum(k=0, n, binomial(n, k) * binomial(3*n+k+1, n)/(3*n+k+1))} \\ _Seiichi Manyama_, Jul 25 2020

%o (PARI) {a(n) = if(n==0, 1, sum(k=1, n, 2^k*binomial(n, k) * binomial(3*n, k-1)/n))} \\ _Seiichi Manyama_, Jul 25 2020

%Y Cf. A027307 (the case y=2x), A008288 (Delannoy numbers), A008412 (4-dimensional coordination numbers).

%Y This appears to equal 2*A243675. - _N. J. A. Sloane_, Mar 28 2021

%Y The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - _N. J. A. Sloane_, Mar 28 2021

%K easy,nonn

%O 0,2

%A Joachim Schroeder (schroderjd(AT)qwa.uovs.ac.za), Sep 10 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 07:02 EDT 2024. Contains 372729 sequences. (Running on oeis4.)