Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 23 2022 16:13:04
%S 1,1,1,1,1,2,1,1,3,3,1,1,5,6,5,1,1,9,14,13,7,1,1,17,36,40,24,11,1,1,
%T 33,98,136,101,48,15,1,1,65,276,490,477,266,86,22,1,1,129,794,1828,
%U 2411,1703,649,160,30,1,1,257,2316,6970,12729,11940,5746,1593,282,42,1,1,513
%N Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->j^k).
%C In general, column k > 0 is asymptotic to (Gamma(k+2)*Zeta(k+2))^((1-2*Zeta(-k)) /(2*k+4)) * exp((k+2)/(k+1) * (Gamma(k+2)*Zeta(k+2))^(1/(k+2)) * n^((k+1)/(k+2)) + Zeta'(-k)) / (sqrt(2*Pi*(k+2)) * n^((k+3-2*Zeta(-k))/(2*k+4))). - _Vaclav Kotesovec_, Mar 01 2015
%H Alois P. Heinz, <a href="/A144048/b144048.txt">Antidiagonals = 0..99, flattened</a>
%H Vaclav Kotesovec, <a href="https://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F G.f. of column k: Product_{j>=1} 1/(1-x^j)^(j^k).
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, ...
%e 1, 1, 1, 1, 1, 1, ...
%e 2, 3, 5, 9, 17, 33, ...
%e 3, 6, 14, 36, 98, 276, ...
%e 5, 13, 40, 136, 490, 1828, ...
%e 7, 24, 101, 477, 2411, 12729, ...
%p with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n,k)-> etr(j->j^k)(n); seq(seq(A(n,d-n), n=0..d), d=0..13);
%t etr[p_] := Module[{ b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; A[n_, k_] := etr[Function[j, j^k]][n]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 13}] // Flatten (* _Jean-François Alcover_, Dec 27 2013, translated from Maple *)
%Y Columns k=0-9 give: A000041, A000219, A023871, A023872, A023873, A023874, A023875, A023876, A023877, A023878.
%Y Rows give: 0-1: A000012, 2: A000051, A094373, 3: A001550, 4: A283456, 5: A283457.
%Y Main diagonal gives A252782.
%Y Cf. A283272.
%K nonn,tabl
%O 0,6
%A _Alois P. Heinz_, Sep 08 2008