login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Shifts left when Euler transform applied 3 times.
3

%I #19 Aug 27 2018 22:43:46

%S 0,1,1,4,13,51,197,828,3526,15538,69627,317564,1466868,6853320,

%T 32317354,153636769,735493374,3542610091,17155811156,83480667707,

%U 407969449010,2001479974330,9853652529076,48666276924852,241059431701113,1197237945360797,5960804381552300

%N Shifts left when Euler transform applied 3 times.

%H Alois P. Heinz, <a href="/A144035/b144035.txt">Table of n, a(n) for n = 0..1000</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%p b:= ((proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1,

%p add(add(d*p(d), d=numtheory[divisors](j))*b(n-j), j=1..n)/n)

%p end end)@@3)(a):

%p a:= n-> b(n-1):

%p seq(a(n), n=0..25); # revised _Alois P. Heinz_, Aug 27 2018

%t etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := Module[{a, b, t}, b[1] = etr[a]; For[ t = 2, t <= k, t++, b[t] = etr[b[t-1]]]; a = Function[m, If[m == 1, 1, b[k][m-1]]]; a[n]]; Table[ A[n, 3], {n, 0, 30} ] (* _Jean-François Alcover_, Mar 05 2015, after _Alois P. Heinz_ *)

%Y 3rd column of A144042.

%Y Cf. A316103.

%K eigen,nonn

%O 0,4

%A _Alois P. Heinz_, Sep 07 2008