The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143922 E.g.f. A(x) satisfies: A(x) = 1 + x*exp(Integral A(x)^2 dx). 3

%I

%S 1,1,2,9,52,395,3666,40257,510600,7343523,118093310,2099660497,

%T 40896662124,866008634907,19808285169834,486698217317985,

%U 12784410332144656,357512156423101427,10604399352362692182

%N E.g.f. A(x) satisfies: A(x) = 1 + x*exp(Integral A(x)^2 dx).

%C Compare definition of e.g.f. A(x) to the trivial statement:

%C if F(x) = 1/(1-x) then F(x) = 1 + x*exp(Integral F(x) dx).

%C Here Integral F(x) dx does not include the constant of integration.

%H Vaclav Kotesovec, <a href="/A143922/b143922.txt">Table of n, a(n) for n = 0..400</a>

%F E.g.f. derivative: A'(x) = [1 + x*A(x)^2]*(A(x) - 1)/x.

%F a(n) ~ n^n / (exp(n) * r^(n+1/2)), where r = 0.58963282569434540653295100228290669896338789564481715119... - _Vaclav Kotesovec_, Feb 20 2014

%e E.g.f. A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 395*x^5/5! +...

%e A(x)^2 = 1 + 2*x + 6*x^2/2! + 30*x^3/3! + 200*x^4/4! + 1670*x^5/5! +...

%e Let L(x) = Integral A(x)^2 dx where A(x) = 1 + x*exp(L(x)), then

%e L(x) = x + 2*x^2/2! + 6*x^3/3! + 30*x^4/4! + 200*x^5/5! +...

%e exp(L(x)) = 1 + x + 3*x^2/2! + 13*x^3/3! + 79*x^4/4! + 611*x^5/5! +...

%t a = ConstantArray[0,20]; a[[1]]=1; a[[2]]=1; Do[a[[n+1]] = (-n! * Sum[a[[i+1]] * a[[n-i]]/i!/(n-i-1)!,{i,0,n-1}] + n! * Sum[a[[k+1]]/k! * Sum[a[[i+1]]*a[[n-k-i]]/i!/(n-k-i-1)!,{i,0,n-1}],{k,0,n-1}])/(n-1),{n,2,19}]; a (* _Vaclav Kotesovec_, Feb 20 2014 *)

%o (PARI) {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*exp(intformal(A^2)));n!*polcoeff(A,n)}

%Y Cf. A143923, A143924.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Sep 06 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 04:52 EST 2021. Contains 349562 sequences. (Running on oeis4.)