Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Apr 05 2024 03:23:12
%S 5,0,8,3,5,8,1,5,9,9,8,4,2,1,6,8,6,3,5,4,2,6,9,3,9,2,6,7,1,9,9,9,0,3,
%T 6,2,3,4,3,2,3,0,2,2,6,8,6,2,5,0,3,5,9,9,0,3,5,3,3,7,1,3,9,6,1,5,4,1,
%U 1,4,4,2,7,1,9,2,6,7,9,9,3,1,8,7,6,4,7,0,2,4,0,0,9,5,4,6,5,8,2,5
%N Decimal expansion of the constant 1/2! + 1/5! + 1/8! + ... = 0.50835 81599 84216 ... .
%C Define a sequence of real numbers R(n) by R(n) := Sum_{k >= 0} (3*k)^n/(3*k)! for n = 0,1,2... . This constant is R(1); the decimal expansions of R(0) = 1 + 1/3!+ 1/6! + 1/9! + ... and R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... may be found in A143819 and A143820. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i = 0..n} binomial(n,i) *3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1). Some examples are given below.
%H Michael I. Shamos, <a href="http://euro.ecom.cmu.edu/people/faculty/mshamos/cat.pdf">A catalog of the real numbers</a>, (2011). See p. 460.
%F Constant = (exp(1) + w*exp(w) + w^2*exp(w^2))/3, where w = exp(2*Pi*i/3). A143819 + A143820 + A143821 = exp(1).
%F Continued faction: 1/(2 - 2/(61 - 60/(337 - 336/(991 - ... - P(n-1)/((P(n) + 1) - ... ))))), where P(n) = (3*n)*(3*n + 1)*(3*n + 2) for n >= 1. Cf. A346441. - _Peter Bala_, Feb 22 2024
%e R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
%e =======================================
%e ..R(n)..|.....R(0).....R(1)...R(2)-R(1)
%e =======================================
%e ..R(3)..|.......1........1........3....
%e ..R(4)..|.......6........2........7....
%e ..R(5)..|......25.......11.......16....
%e ..R(6)..|......91.......66.......46....
%e ..R(7)..|.....322......352......203....
%e ..R(8)..|....1232.....1730.....1178....
%e ..R(9)..|....5672.....8233.....7242....
%e ..R(10).|...32202....39987....43786....
%e ...
%e The column entries are from A143815, A143816 and A143817.
%t RealDigits[ N[ -((Cos[Sqrt[3]/2] - E^(3/2) + Sqrt[3]*Sin[Sqrt[3]/2])/(3*Sqrt[E])), 105]][[1]] (* _Jean-François Alcover_, Nov 08 2012 *)
%Y A073742, A073743, A143815, A143816, A143817, A143818, A143819, A143820, A346441
%K cons,easy,nonn
%O 0,1
%A _Peter Bala_, Sep 03 2008
%E Offset corrected by _R. J. Mathar_, Feb 05 2009