login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Twin prime numbers of the form : i^2+j^3, as sum of square and cube.
0

%I #6 Jul 02 2023 18:35:05

%S 5,17,31,43,73,101,197,241,269,283,347,521,599,811,827,829,1019,1049,

%T 1051,1153,1289,1787,2089,2143,2341,2689,2731,2969,3257,3259,3391,

%U 4051,4093,4129,4159,4217,4481,4721,4931,5881,6361,6793,6959,7759,8009,8233

%N Twin prime numbers of the form : i^2+j^3, as sum of square and cube.

%e 31=2^2+3^3; 43=4^2+3^3.

%t lst1={};For[i=1,i<=60,For[j=1,j<=60,c=i^2+j^3;If[((PrimeQ[c]&&PrimeQ[c-2])||(PrimeQ[c]&&PrimeQ[c+2])),AppendTo[lst1,c]];j++ ];i++ ];lst2=Take[Union[lst1],80]

%t Select[Union[Flatten[Table[m^2+n^3,{m,60},{n,60}]]],PrimeQ[#]&&AnyTrue[#+ {2,-2},PrimeQ]&] (* _Harvey P. Dale_, Jul 02 2023 *)

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Sep 01 2008