Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Nov 17 2019 01:28:22
%S 9,20,35,15,20,26,32,50,102,10,42,56,299,15,14,48,28,93,72,88,95,18,
%T 185,63,45,92,430,44,25,1175,18,18,21,38,132,30,39,190,1829,12,132,68,
%U 54,36,938,68,52,852,15,150,200,8,286,65,324,32,3569,12,204,135,93,200,25,40
%N (1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3, 13, 2*7, 3*5, ...) becomes ((1+2)*3, (2+2)*5, (2+3)*7, (2+3)*3, (2+2)*5, (11+2)*2, (3+13)*2, (7+3)*5, ...).
%H Robert Israel, <a href="/A143704/b143704.txt">Table of n, a(n) for n = 1..10000</a>
%e a(8) = ( 7 + 3) * 5 = 10*5 = 50;
%e a(9) = ( 2 + 4) * 17 = 102;
%e a(10) = ( 2 + 3) * 2 = 10;
%e a(11) = (19 + 2) * 2 = 42;
%e a(12) = ( 5 + 3) * 7 = 56;
%e a(13) = ( 2 + 11) * 23 = 199;
%e etc.
%p g:= proc(n) local L; L:= sort(ifactors(n)[2],(s,t) -> s[1]<t[1]);
%p L:= map(proc(t) if t[2]=1 then t[1] else op(t) fi end proc, L);
%p op(L);
%p end proc:
%p g(1):= 1:
%p B:= map(g, [$1..100]):
%p seq((B[3*i+1]+B[3*i+2])*B[3*i+3], i=0..(nops(B)-3)/3); # _Robert Israel_, Nov 16 2019
%Y Cf. A141287, A141261, A136735.
%K nonn
%O 1,1
%A _Juri-Stepan Gerasimov_, Nov 13 2008
%E Corrected (199 replaced by 299, 60 replaced by 30, 549 replaced by 54 etc.) by _R. J. Mathar_, Apr 18 2010