login
A143652
(0, 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3, 13, ...) becomes (0^(1+2), 3^(2+2), 5^(2+3), 7^(2+3), 3^(2+2), 5^(11+2), 2^(3+13), ...).
1
0, 81, 3125, 16807, 81, 1220703125, 65536, 1024, 15625, 1419857, 2097152, 256, 96889010407, 6436343, 2187, 65536, 81, 157775382034845806615042743, 150094635296999121, 256, 61159090448414546291, 1953125, 32
OFFSET
1,2
EXAMPLE
0^(1 + 2) = 0^3 = 0 = a(1).
3^(2 + 2) = 3^4 = 81 = a(2).
5^(2 + 3) = 5^5 = 3125 = a(3).
7^(2 + 3) = 7^5 = 16807 = a(4).
3^(2 + 2) = 3^4 = 81 = a(5).
5^(11 + 2) = 5^13 = 1220703125 = a(6).
2^(3 + 13) = 2^16 = 65536 = a(7).
2^(7 + 3) = 2^10 = 1024 = a(8), etc.
MAPLE
pflat2 := proc(nmax) local a, ifs, n, p, c ; a := [0, 1] ; for n from 2 to nmax do ifs := ifactors(n)[2] ; for p in ifs do a := [op(a), op(1, p)] ; if op(2, p) > 1 then a := [op(a), op(2, p)] ; fi; od: od: a ; end: pL := pflat2(120) : for n from 1 to nops(pL)-4 by 3 do printf("%d, ", op(n, pL)^(op(n+1, pL)+op(n+2, pL)) ) ; od: # R. J. Mathar, Nov 06 2008
CROSSREFS
Sequence in context: A205902 A295252 A295651 * A270343 A236894 A231768
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by R. J. Mathar, Nov 06 2008
STATUS
approved