login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the constant E_3(0) := Sum_{n >= 0} (-1)^floor(n/3)/n! = 1 + 1/1! + 1/2! - 1/3! - 1/4! - 1/5! + + + - - - ... .
4

%I #20 Oct 14 2023 13:26:01

%S 2,2,8,4,9,4,2,3,8,2,4,0,9,6,3,5,2,0,8,9,9,9,0,5,0,0,1,9,2,6,3,0,8,2,

%T 7,0,2,1,6,1,5,1,3,2,6,2,9,9,4,9,5,8,9,7,8,5,9,8,2,8,8,9,8,0,0,3,7,3,

%U 7,1,0,1,5,7,5,1,9,7,3,4,5,9,4,0,3,7,4,4,9,5,1,2,5,2,4,6,3,4,4,8,8

%N Decimal expansion of the constant E_3(0) := Sum_{n >= 0} (-1)^floor(n/3)/n! = 1 + 1/1! + 1/2! - 1/3! - 1/4! - 1/5! + + + - - - ... .

%C Define E_3(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! = 0^n/0! + 1^n/1! + 2^n/2! - 3^n/3! - 4^n/4! - 5^n/5! + + + - - - ... for n = 0,1,2,... . It is easy to see that E_3(n+3) = 3*E_3(n+2) - 2*E_3(n+1) - Sum_{i = 0..n} 3^i*binomial(n,i) * E_3(n-i) for n >= 0. Thus E_3(n) is an integral linear combination of E_3(0), E_3(1) and E_3(2). See the examples below.

%C The decimal expansions of E_3(1) and E_3(2) are given in A143626 and A143627. Compare with A143623 and A143624.

%C E_3(n) as linear combination of E_3(i), i = 0..2.

%C =======================================

%C ..E_3(n)..|....E_3(0)...E_3(1)...E_3(2)

%C =======================================

%C ..E_3(3)..|.....-1.......-2........3...

%C ..E_3(4)..|.....-6.......-7........7...

%C ..E_3(5)..|....-25......-23.......14...

%C ..E_3(6)..|....-89......-80.......16...

%C ..E_3(7)..|...-280.....-271......-77...

%C ..E_3(8)..|...-700.....-750.....-922...

%C ..E_3(9)..|...-380.....-647....-6660...

%C ..E_3(10).|..13452....13039...-41264...

%C ...

%C The columns are A143628, A143629 and A143630.

%D Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.

%e 2.284942382409635208999050...

%t RealDigits[ N[ (2*E^(3/2)*(Cos[Sqrt[3]/2] + Sqrt[3]*Sin[Sqrt[3]/2]) + 1)/(3*E), 105]][[1]] (* _Jean-François Alcover_, Nov 08 2012 *)

%Y Cf. A143623, A143624, A143626, A143627, A143628, A143629, A143630.

%K cons,easy,nonn

%O 1,1

%A _Peter Bala_, Aug 30 2008

%E Offset corrected by _R. J. Mathar_, Feb 05 2009