Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Oct 02 2024 04:17:56
%S 1,1,3,3,8,3,14,7,14,8,27,7,35,12,20,18,50,11,58,16,35,24,74,15,68,29,
%T 54,29,101,15,111,39,64,41,84,26,140,47,78,40,158,24,168,51,75,61,186,
%U 34,170,49,111,66,217,39,160,65,131,80,247,32,261,84,122,92,197,45,292,92,162,60,312,55,326,104,135,106,263,55,356,85,206
%N Triangle A054521 * A000005 as a vector.
%F Triangle A054521 * A000005 as a vector; where 1's indicate the relative primes of n by rows and A000005 = d(n): (1, 2, 2, 3, 2, 4, 2, 4, 3,...)
%F a(n) = Sum_{ m=1..n and gcd(n,m)=1 } tau(m), where tau(m)=A000005(m). A211932(n)+a(n) = A006218(n). - _Naohiro Nomoto_, Aug 05 2012
%e a(8) = 7 since the relative primes of 8 are (1, 3, 5, 7). a(8) = d(1) + d(3) + d(5) + d(7) = 1 + 2 + 2 + 2. Or, a(8) = 7 = (1, 0, 1, 0, 1, 0, 1, 0) dot (1, 2, 2, 3, 2, 4, 2, 4), where (1, 0, 1, 0, 1, 0, 1, 0) = row 8 of triangle A054521 and d(n) = (1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2,...).
%e a(7) = 14 = (1, 1, 1, 1, 1, 1, 0) dot (1, 2, 2, 3, 2, 4, 2) = (d(1) + d(2) + d(3) + d(4) + d(5) + d(6)).
%p A143615 := proc(n)
%p local a,m;
%p a := 0 ;
%p for m from 1 to n do
%p if gcd(m,n) = 1 then
%p a := a+numtheory[tau](m) ;
%p end if;
%p end do:
%p a ;
%p end proc: # _R. J. Mathar_, Aug 08 2012
%Y Cf. A054521, A000005, A143614.
%K nonn
%O 1,3
%A _Gary W. Adamson_, Aug 27 2008
%E More terms from _Naohiro Nomoto_, Aug 05 2012