login
G.f. satisfies: A(x) = 1 + x*A(2x)*A(-x).
0

%I #2 Mar 30 2012 18:37:11

%S 1,1,1,3,19,297,8953,572155,72116459,18460128753,9414877745601,

%T 9640779710687955,19725063387945457219,80793830752052788593529,

%U 661701532957780822275151305,10841317673677535233876159099755

%N G.f. satisfies: A(x) = 1 + x*A(2x)*A(-x).

%F G.f. satisfies: A(x) = (1 + x*A(2x))/(1 + x^2*A(2x)*A(-2x)).

%F a(n) = Sum_{k=0..n-1} 2^k*(-1)^(n-1-k)*a(k)*a(n-1-k) for n>0 with a(0)=1.

%e G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 19*x^4 + 297*x^5 + 8953*x^6 +...

%e A(x) = 1 + x*A(2x)*[1 - x*A(-2x)*[1 + x*A(2x)*[1 - x*A(-2x)*[1 +...]]]].

%o (PARI) {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,2*x)*subst(A,x,-x));polcoeff(A,n)}

%o (PARI) {a(n)=if(n==0,1,sum(k=0,n-1,2^k*(-1)^(n-1-k)*a(k)*a(n-1-k)))}

%K nonn

%O 0,4

%A _Paul D. Hanna_, Aug 28 2008