login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies A(x) = exp(x*A(x^9/9!)).
2

%I #15 Nov 29 2023 10:25:24

%S 1,1,1,1,1,1,1,1,1,1,11,111,661,2861,10011,30031,80081,194481,437581,

%T 1385671,20323161,294517861,2851708861,20461620411,117812647921,

%U 572637720601,2430703053351,9228958338601,32965820988101,225123959060001,4466029537119151

%N E.g.f. satisfies A(x) = exp(x*A(x^9/9!)).

%H Alois P. Heinz, <a href="/A143573/b143573.txt">Table of n, a(n) for n = 0..200</a>

%F a(0) = 1; a(n) = (n-1)! * Sum_{k=0..floor((n-1)/9)} (9*k+1) * a(k) * a(n-1-9*k) / (362880^k * k! * (n-1-9*k)!). - _Seiichi Manyama_, Nov 29 2023

%p A:= proc(n) option remember; if n<=0 then 1 else unapply (convert (series (exp (x*A(n-9)(x^9/362880)), x,n+1), polynom),x) fi end: a:= n-> coeff (A(n)(x), x,n)*n!: seq(a(n), n=0..36);

%t A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^9/9!]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 36}] (* _Jean-François Alcover_, Feb 13 2014, after Maple *)

%Y 9th column of A143565.

%K nonn

%O 0,11

%A _Alois P. Heinz_, Aug 24 2008