login
Decimal expansion of the largest zero of Riemann's prime counting function R(x).
1

%I #10 Mar 04 2017 00:41:14

%S 1,8,2,8,6,4,3,2,6,9,7,5,2,5,2,2,6,1,0,4,0,9,7,3,2,5,2,7,3,1,8,0,6,9,

%T 3,2,0,0,0,8,6,5,2,9,1,8,1,1,0,1,9,8,6,3,2,3,9,2,0,2,7,7,9,1,1,5,9,7,

%U 7,1,1,1,7,2,0,4,6,4,1,1,8,0,0,9,2,7,8,5,5,0,1,1,2,5,5,8,2,4,4,2,1,5,4,0,0

%N Decimal expansion of the largest zero of Riemann's prime counting function R(x).

%D Bornemann, F., The SIAM 100-Digit Challenge: A Decade Later, Jahresber. Dtsch. Math. Ver. (2016) 118: 87. doi:10.1365/s13291-016-0137-2

%H Folkmar Bornemann, <a href="http://www-m3.ma.tum.de/m3old/bornemann/challengebook/AppendixD/waldvogel_problem_solution.pdf">Solution of a problem posed by Jörg Waldvogel</a> (2003).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RiemannPrimeCountingFunction.html">Riemann Prime Counting Function</a>

%e 1.828643269752522610409732527318069320008652918 * 10^-14828.

%Y Cf. A143530.

%K nonn,cons

%O -14827,2

%A _Eric W. Weisstein_, Aug 22 2008