login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of the polynomials x^(n - 1)*A(n,x + 1/x), where A(n,x) are the Eulerian polynomials of A008292.
2

%I #13 Oct 27 2018 02:32:31

%S 1,1,1,1,1,4,3,4,1,1,11,14,23,14,11,1,1,26,70,104,139,104,70,26,1,1,

%T 57,307,530,973,947,973,530,307,57,1,1,120,1197,3016,5970,8568,9549,

%U 8568,5970,3016,1197,120,1,1,247,4300,17101,37105,70474,90069,107241,90069

%N Triangle of coefficients of the polynomials x^(n - 1)*A(n,x + 1/x), where A(n,x) are the Eulerian polynomials of A008292.

%C Row sums yield A000670 (without leading 1).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Polylogarithm.html">Polylogarithm</a>

%F Row n is generated by the polynomial (1 - x - 1/x)^(n + 1)*x^(n - 1)*Li(-n, x + 1/x)/(x + 1/x), where Li(n, z) is the polylogarithm function.

%F E.g.f.: (exp(x*y) - exp((1 + x^2)*y))/(x*exp((1 + x^2)*y) - (1 + x^2)*exp(x*y)). - _Franck Maminirina Ramaharo_, Oct 25 2018

%e Triangle begins:

%e 1;

%e 1, 1, 1;

%e 1, 4, 3, 4, 1;

%e 1, 11, 14, 23, 14, 11, 1;

%e 1, 26, 70, 104, 139, 104, 70, 26, 1;

%e 1, 57, 307, 530, 973, 947, 973, 530, 307, 57, 1;

%e ... reformatted. - _Franck Maminirina Ramaharo_, Oct 25 2018

%t Table[CoefficientList[FullSimplify[ExpandAll[(1 - x - 1/x)^(n + 1)*x^(n - 1)*PolyLog[-n, x + 1/x]/(x + 1/x)]], x], {n, 1, 10}]//Flatten

%Y Compare with A141720.

%Y Cf. A008292.

%Y Cf. A143506, A143507.

%K nonn,tabf

%O 1,6

%A _Roger L. Bagula_ and _Gary W. Adamson_, Oct 25 2008

%E Edited and new name by _Franck Maminirina Ramaharo_, Oct 25 2018