login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143465
A McMullen transform involving x->x+1/x of Lehmer's polynomial gives the polynomial used to get this expansion sequence: p(x)=1 + x + 10 x^2 + 8 x^3 + 44 x^4 + 28 x^5 + 113 x^6 + 57 x^7 + 191 x^8 + 79 x^9 + 227 x^10 + 79 x^11 + 191 x^12 + 57 x^13 + 113 x^14 + 28 x^15 + 44 x^16 + 8 x^17 + 10 x^18 + x^19 + x^20.
0
1, -1, -9, 11, 43, -65, -142, 272, 351, -897, -636, 2458, 618, -5746, 1125, 11522, -8822, -19299, 34019, 23687, -107090, -3953, 305278, -106133, -814418, 505401, 2042163, -1769399, -4753130, 5499052, 9967351
OFFSET
1,3
FORMULA
q(x)=x^10 + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1; p(x)=x^10*q(x+1/x); p(x)=1 + x + 10 x^2 + 8 x^3 + 44 x^4 + 28 x^5 + 113 x^6 + 57 x^7 + 191 x^8 + 79 x^9 + 227 x^10 + 79 x^11 + 191 x^12 + 57 x^13 + 113 x^14 + 28 x^15 + 44 x^16 + 8 x^17 + 10 x^18 + x^19 + x^20; a(n)=Coefficient_Expansion(x^20*p(1/x)).
MATHEMATICA
f[x_] = x^10 + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1; h[x_] = ExpandAll[x^10*f[x + 1/x]]; g[x] = ExpandAll[x^20*h[1/x]]; a = Table[SeriesCoefficient[ Series[1/g[x], {x, 0, 30}], n], {n, 0, 30}]
CROSSREFS
Sequence in context: A129399 A145790 A345109 * A201999 A195309 A242507
KEYWORD
uned,sign
AUTHOR
STATUS
approved