login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143456
Expansion of 1/(x^k*(1-x-3*x^(k+1))) for k=5.
3
1, 4, 7, 10, 13, 16, 19, 31, 52, 82, 121, 169, 226, 319, 475, 721, 1084, 1591, 2269, 3226, 4651, 6814, 10066, 14839, 21646, 31324, 45277, 65719, 95917, 140434, 205372, 299344, 435175, 632332, 920083, 1341385, 1957501, 2855533, 4161058, 6058054
OFFSET
0,2
COMMENTS
a(n) is also the number of length n quaternary words with at least 5 0-digits between any other digits.
FORMULA
G.f.: 1/(x^5*(1-x-3*x^6)).
MAPLE
a:= proc(k::nonnegint) local n, i, j; if k=0 then unapply(4^n, n) else unapply((Matrix(k+1, (i, j)-> if (i=j-1) or j=1 and i=1 then 1 elif j=1 and i=k+1 then 3 else 0 fi)^(n+k))[1, 1], n) fi end(5): seq(a(n), n=0..52);
MATHEMATICA
Series[1/(1-x-3*x^6), {x, 0, 52}] // CoefficientList[#, x]& // Drop[#, 5]& (* Jean-François Alcover, Feb 13 2014 *)
CROSSREFS
5th column of A143461.
Sequence in context: A327139 A198265 A310681 * A310682 A090852 A182112
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Aug 16 2008
STATUS
approved