login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of q^(-1/6) * eta(q)^2 * eta(q^4) / eta(q^2) in powers of q.
4

%I #16 Mar 12 2021 22:24:45

%S 1,-2,0,0,1,2,0,0,-3,0,0,0,-2,2,0,0,2,2,0,0,-1,-2,0,0,0,-2,0,0,1,-2,0,

%T 0,2,2,0,0,4,-2,0,0,-2,0,0,0,0,-2,0,0,-1,0,0,0,-2,0,0,0,2,4,0,0,-1,2,

%U 0,0,0,0,0,0,-2,0,0,0,-2,2,0,0,-2,-2,0,0,0,-2,0,0,0,4,0,0,1,0,0,0,4,0,0,0,-2,0,0,0,2,-2,0,0,1

%N Expansion of q^(-1/6) * eta(q)^2 * eta(q^4) / eta(q^2) in powers of q.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A143377/b143377.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of phi(-x) * f(-x^4) = psi(-x) * f(-x) = psi(-x)^2 * chi(-x^2) = f(-x)^2 / chi(-x^2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.

%F Euler transform of period 4 sequence [ -2, -1, -2, -2, ...].

%F a(n) = (-1)^(n / 2) * b(6*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 8) or p == 23 (mod 24), b(p^e) = (-1)^(e/2) * (1 + (-1)^e) / 2 if p == 3 (mod 8) or p == 17 (mod 24) and p>3, b(p^e) = (e+1) * s^e if p == 1, 7 (mod 24) where p = x^2 + 6*y^2 and s = Kronecker(12, x) * (-1)^((p-1) / 12).

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 4608^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A143379.

%F a(4*n + 2) = a(4*n + 3) = 0.

%F G.f.: Product_{k>0} (1 - x^k)^2 * (1 + x^(2*k)).

%F a(n) = (-1)^n * A143380(n). a(4*n) = A143378(n). a(4*n + 1) = -2 * A143379(n). - _Michael Somos_, Apr 07 2015

%e G.f. = 1 - 2*x + x^4 + 2*x^5 - 3*x68 - 2*x^12 + 2*x^13 + 2*x^16 + 2*x^17 + ...

%e G.f. = q - 2*q^7 + q^25 + 2*q^31 - 3*q^49 - 2*q^73 + 2*q^79 + 2*q^97 + 2*q^103 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ x^4] EllipticTheta[ 4, 0, x], {x, 0, n}]; (* _Michael Somos_, Apr 07 2015 *)

%o (PARI) {a(n) = my(A, p, e, x); if(n<0, 0, A = factor(6*n + 1); simplify( I^n * prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p<5, 0, p%8==5 || p%24==23, !(e%2), p%8==3 || p%24==17, (-1)^(e\2)*!(e%2), for(i=1, sqrtint(p\6), if( issquare(p - 6*i^2, &x), break)); (e+1) * (kronecker(12, x) * I^((p-1) / 6))^e ))))};

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) / eta(x^2 + A), n))};

%Y Cf. A143378, A143379, A143380.

%K sign

%O 0,2

%A _Michael Somos_, Aug 10 2008