login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of root degrees of all symmetric ordered trees with n edges.
1

%I #22 Apr 09 2024 06:31:26

%S 1,3,5,12,20,45,77,168,294,630,1122,2376,4290,9009,16445,34320,63206,

%T 131274,243542,503880,940576,1939938,3640210,7488432,14115100,

%U 28973100,54826020,112326480,213286590,436268025,830905245,1697168160,3241119750,6611884290

%N Sum of root degrees of all symmetric ordered trees with n edges.

%F G.f.: z*C(z^2)^2*(1+2*z*C(z^2))/(1-z*C(z^2)), where C(z)=(1-sqrt(1-4*z))/(2*z) is the g.f. of the Catalan numbers (A000108).

%F a(n) = Sum_{k=1..n} k * A143359(n,k).

%F D-finite with recurrence 2*(n+3)*a(n) +(-n-5)*a(n-1) +(-11*n-3)*a(n-2) +2*(2*n+1)*a(n-3) +12*(n-3)*a(n-4)=0. - _R. J. Mathar_, Jul 24 2022

%p C := z -> (1/2-(1/2)*sqrt(1-4*z))/z: G := z*C(z^2)^2*(1+2*z*C(z^2))/(1-z*C(z^2)): Gser := series(G, z=0, 40): seq(coeff(Gser, z, n), n=1..34);

%t Module[{nmax = 33, G, C}, G = z*C[z^2]^2*(1 + 2*z*C[z^2])/(1 - z*C[z^2]); C[z_] = (1/2-(1/2)*Sqrt[1-4*z])/z; CoefficientList[G/z + O[z]^nmax, z]] (* _Jean-François Alcover_, Apr 09 2024 *)

%Y Cf. A000108, A129869 and A143359.

%K nonn

%O 1,2

%A _Emeric Deutsch_, Aug 15 2008