login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143219
Triangle read by rows, A127648 * A000012 * A127773, 1 <= k <= n.
1
1, 2, 6, 3, 9, 18, 4, 12, 24, 40, 5, 15, 30, 50, 75, 6, 18, 36, 60, 90, 126, 7, 21, 42, 70, 105, 147, 196, 8, 24, 48, 80, 120, 168, 224, 288, 9, 27, 54, 90, 135, 189, 252, 324, 405, 10, 30, 60, 100, 150, 210, 280, 360, 450, 550
OFFSET
1,2
FORMULA
Triangle read by rows, A127648 * A000012 * A127773, 1 <= k <= n.
Sum_{k=1..n} T(n, k) = A002417(n).
T(n, n) = A002411(n).
From G. C. Greubel, Jul 12 2022: (Start)
T(n, k) = A002024(n,k) * A127773(n,k).
T(n, k) = n * binomial(k+1, 2).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/4)*(4*n - 3*floor((n+1)/2) + 3)*binomial(2 + floor((n+1)/2), 3).
T(2*n-1, n) = A002414(n), n >= 1.
T(2*n-2, n-1) = A011379(n-1), n >= 2. (End)
EXAMPLE
First few rows of the triangle =
1;
2, 6;
3, 9, 18;
4, 12, 24, 40;
5, 15, 30, 50, 75;
6, 18, 36, 60, 90, 126;
7, 21, 42, 70, 105, 147, 196;
...
MATHEMATICA
Table[n*Binomial[k+1, 2], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 12 2022 *)
PROG
(Magma) [n*Binomial(k+1, 2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 12 2022
(SageMath) flatten([[n*binomial(k+1, 2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jul 12 2022
CROSSREFS
Cf. A002024, A002411 (right border), A002414, A002417 (row sums), A011379.
Sequence in context: A378822 A079297 A276941 * A109465 A090705 A208547
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jul 30 2008
STATUS
approved