Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Sep 18 2024 03:51:20
%S 30,60,90,120,150,180,240,270,300,360,450,480,540,600,720,750,810,900,
%T 960,1080,1200,1350,1440,1500,1620,1800,1920,2160,2250,2400,2430,2700,
%U 2880,3000,3240,3600,3750,3840,4050,4320,4500,4800,4860
%N Numbers with distinct prime factors 2, 3, and 5.
%C Numbers of the form 2^i * 3^j * 5^k with i, j, k > 0. - _Reinhard Zumkeller_, Sep 13 2011
%C Integers k such that phi(k)/k = 4/15. - _Artur Jasinski_, Nov 07 2008
%H Vaclav Kotesovec, <a href="/A143207/b143207.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from T. D. Noe)
%F A001221(a(n)) = 3; A020639(a(n)) = 2; A006530(a(n)) = 5; A143201(a(n)) = 6.
%F a(n) = 30*A051037(n); A007947(a(n)) = A010869(n). - _Reinhard Zumkeller_, Sep 13 2011
%F a(n) ~ sqrt(30) * exp((6*log(2)*log(3)*log(5)*n)^(1/3)). - _Vaclav Kotesovec_, Sep 22 2020
%F Sum_{n>=1} 1/a(n) = 1/8. - _Amiram Eldar_, Sep 24 2020
%t a = {}; Do[If[EulerPhi[x]/x == 4/15, AppendTo[a, x]], {x, 1, 11664}]; a (* _Artur Jasinski_, Nov 07 2008 *)
%t n = 10^4; Table[2^i*3^j*5^k, {i, 1, Log[2, n]}, {j, 1, Log[3, n/2^i]}, {k, 1, Log[5, n/(2^i*3^j)]}] // Flatten // Sort (* _Amiram Eldar_, Sep 24 2020 *)
%o (Haskell)
%o import Data.Set (singleton, deleteFindMin, insert)
%o a143207 n = a143207_list !! (n-1)
%o a143207_list = f (singleton (2*3*5)) where
%o f s = m : f (insert (2*m) $ insert (3*m) $ insert (5*m) s') where
%o (m,s') = deleteFindMin s
%o -- _Reinhard Zumkeller_, Sep 13 2011
%o (PARI) list(lim)=my(v=List(),s,t); for(i=1,logint(lim\6,5), t=5^i; for(j=1,logint(lim\t\2,3), s=t*3^j; while((s<<=1)<=lim, listput(v,s)))); Set(v) \\ _Charles R Greathouse IV_, Sep 14 2015
%o (PARI) is(n) = if(n%30,return(0)); my(f=factor(n,6)[,1]); f[#f]<6 \\ _David A. Corneth_, Sep 22 2020
%o (Magma) [n: n in [1..5000] | PrimeDivisors(n) eq [2,3,5]]; // _Bruno Berselli_, Sep 14 2015
%o (Python)
%o from sympy import integer_log
%o def A143207(n):
%o def bisection(f,kmin=0,kmax=1):
%o while f(kmax) > kmax: kmax <<= 1
%o while kmax-kmin > 1:
%o kmid = kmax+kmin>>1
%o if f(kmid) <= kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o return kmax
%o def f(x):
%o c = n+x
%o for i in range(integer_log(x,5)[0]+1):
%o for j in range(integer_log(m:=x//5**i,3)[0]+1):
%o c -= (m//3**j).bit_length()
%o return c
%o return bisection(f,n,n)*30 # _Chai Wah Wu_, Sep 16 2024
%Y Cf. A069819.
%Y Subsequence of A143204 and of A051037.
%K nonn,easy
%O 1,1
%A _Reinhard Zumkeller_, Aug 12 2008
%E New name from _Charles R Greathouse IV_, Sep 14 2015