login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of probabilities in the Newton-Pepys problem.
1

%I #7 Oct 11 2023 08:41:32

%S 1,31031,1346704211,15166600495229,2769520712100913771,

%T 14140406602762826441989,733773840666057086093759257,

%U 2827389271155038104266471538091,4190504590060194179938375947107323897

%N Numerators of probabilities in the Newton-Pepys problem.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Newton-PepysProblem.html">Newton-Pepys Problem</a>

%F (5^(5*n)*(6*n)!*Hypergeometric2F1Regularized[1, -5*n, 1 + n, -1/5])/(6^(6*n)*(5*n)!)

%e 1, 31031/46656, 1346704211/2176782336, 15166600495229/25389989167104, ...

%t Numerator[Table[5^(5 n) (6 n)! Hypergeometric2F1Regularized[1, -5 n, n + 1, -1/5]/(6^(6 n) (5 n)!), {n, 0, 20}]]

%Y Cf. A143163.

%K nonn,frac

%O 0,2

%A _Eric W. Weisstein_, Jul 27 2008