login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,m) = (2^(m+1) - 1) * (2^(n-m+1) - 1), read by rows, 0 <= m <= n.
2

%I #12 Sep 13 2024 08:06:46

%S 1,3,3,7,9,7,15,21,21,15,31,45,49,45,31,63,93,105,105,93,63,127,189,

%T 217,225,217,189,127,255,381,441,465,465,441,381,255,511,765,889,945,

%U 961,945,889,765,511,1023,1533,1785,1905,1953,1953,1905,1785,1533,1023,2047

%N Triangle T(n,m) = (2^(m+1) - 1) * (2^(n-m+1) - 1), read by rows, 0 <= m <= n.

%C Row sums are A045618.

%C Considered as a square array A(m,n) = (2^m - 1)(2^n - 1), (m, n >= 1), read by rising antidiagonals, this gives the number of m X n matrices of rank 1 over the field F_2. For a different field F_q, that number would be A(m,n) = (q^m - 1)(q^n - 1)/(q - 1). It satisfies the recurrence relation A(m,n) = A(m,n-1)*q + A(m,1). - _M. F. Hasler_, Sep 12 2024

%F T(n,m) = T(n,n-m).

%F T(n,0) = T(n,n) = 2^(n+1) - 1. - _M. F. Hasler_, Sep 12 2024

%e 1;

%e 3, 3;

%e 7, 9, 7;

%e 15, 21, 21, 15;

%e 31, 45, 49, 45, 31;

%e 63, 93, 105, 105, 93, 63;

%e 127, 189, 217, 225, 217, 189, 127;

%e 255, 381, 441, 465, 465, 441, 381, 255;

%e 511, 765, 889, 945, 961, 945, 889, 765, 511;

%e 1023, 1533, 1785, 1905, 1953, 1953, 1905, 1785, 1533, 1023;

%e 2047, 3069, 3577, 3825, 3937, 3969, 3937, 3825, 3577, 3069, 2047;

%e ...

%e From _M. F. Hasler_, Sep 12 2024: (Start)

%e Considered as a square array A(m,n), read by antidiagonals, with m, n >= 1, this represents the following matrix A:

%e m \ n: 1 | 2 | 3 | 4 | 5 | ...

%e -----+------+-----+-----+-----+-----+-----

%e 1 | 1 | 3 | 7 | 15 | 31 | ...

%e 2 | 3 | 9 | 21 | 45 | 93 | ...

%e 3 | 7 | 21 | 49 | 105 | 217 | ...

%e 4 | 15 | 45 | 105 | 225 | 465 | ...

%e ...

%e Here each row equals twice the previous row plus the first row, and likewise for columns. See my comment relating this to rank 1 matrices over F_2. (End)

%t Table[Table[(2^(m + 1) - 1)*(2^(n - m + 1) - 1), {m, 0, n}], {n, 0, 10}]; Flatten[%]

%o (PARI) T(n,m) = (2^(m+1) - 1) * (2^(n-m+1) - 1) \\ _M. F. Hasler_, Sep 12 2024

%Y Cf. A000225 (first column), A068156 (second column).

%K nonn,tabl

%O 0,2

%A _Roger L. Bagula_ and _Gary W. Adamson_, Oct 16 2008