OFFSET
1,6
COMMENTS
The imaginary parts Im(b(n)) are given in A272665.
LINKS
Robert Israel, Table of n, a(n) for n = 1..4300
FORMULA
From R. J. Mathar, Oct 24 2008: (Start)
G.f.: x*(1-x-x^2)/(1-2*x+2*x^3+x^4).
a(n) = 2*a(n-1) -2*a(n-3) -a(n-4). (End)
a(n) = (sin((n-1)*theta)*(tau^(n-1) + (-tau)^(1-n))/phi^(3/2) + cos((n-1)*theta)*(tau^(n-1) - (-tau)^(1-n))*phi^(3/2))/(2*sqrt(5)), where phi=(1+sqrt(5))/2, tau=sqrt(phi+sqrt(phi)), theta=arctan(phi^(-3/2)). - Vladimir Reshetnikov, Oct 05 2016
EXAMPLE
The b(n) sequence (n>=1) is: 0, 1, 1+i, 1+2i, 4i, ...
MAPLE
f:= Re @ gfun:-rectoproc({a(1)=0, a(2)=1, a(n) = (1+I)*a(n-1)+a(n-2)}, a(n), remember):
seq(f(n), n=1..100); # Robert Israel, Apr 25 2016
MATHEMATICA
a[1] = 0; a[2] = 1; a[n_] := a[n] = (1+I)*a[n - 1] + a[n - 2]; Table[Re[a[n]], {n, 1, 30}]
Re[Fibonacci[Range[0, 20], 1 + I]] (* Vladimir Reshetnikov, Apr 25 2016 *)
PROG
(PARI) x='x+O('x^50); Vec(x*(1-x-x^2)/(1-2*x+2*x^3+x^4)) \\ G. C. Greubel, Aug 08 2017
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula and Gary W. Adamson, Oct 13 2008
STATUS
approved