The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143018 Triangle read by rows: T(n,k) (n >= 2, k >= 1) is the number of non-crossing connected graphs on n nodes on a circle such that the distance from a fixed node (root) to the next node is k. Rows are indexed 2,3,4,...; columns are indexed 1,2,3, ... . 3

%I #19 Nov 16 2019 20:08:36

%S 1,3,1,16,6,1,105,41,9,1,768,306,75,12,1,6006,2422,630,118,15,1,49152,

%T 19980,5394,1104,170,18,1,415701,169941,47061,10197,1755,231,21,1,

%U 3604480,1479786,417439,94116,17425,2610,301,24,1

%N Triangle read by rows: T(n,k) (n >= 2, k >= 1) is the number of non-crossing connected graphs on n nodes on a circle such that the distance from a fixed node (root) to the next node is k. Rows are indexed 2,3,4,...; columns are indexed 1,2,3, ... .

%C Row sums yield A007297.

%C T(n,1) = A085614(n-1).

%C Sum_{k=1..n-1} k*T(n,k) = A143020(n).

%H Andrew Howroyd, <a href="/A143018/b143018.txt">Table of n, a(n) for n = 2..1276</a>

%H P. Flajolet and M. Noy, <a href="http://dx.doi.org/10.1016/S0012-365X(98)00372-0">Analytic combinatorics of noncrossing configurations</a>, Discrete Math. 204 (1999), 203-229.

%F T(n,k) = k*L(n-k-1, 3n-k-4, n-1)/(n-1) (n >= 2, 1 <= k <= n-1), where L(p,q,r) = [u^p](1+u)^q/(1-u)^r = Sum_{i=0..min(p,q)} binomial(q,i)*binomial(r+p-1-i, r-1).

%F G.f.: G(t,z) = zg/[g - t*(g - z)], where g=g(z), the g.f. for the number of non-crossing connected graphs on n nodes on a circle, satisfies g^3 + g^2 - 3z*g + 2*z^2 = 0 (A007297).

%F T(n,k) = k*Sum_{i=0..min(n-k-1, 3*n-k-4)} binomial(3*n-k-4, i)*binomial(2*n-k-i-3, n-2)/(n-1). - _Andrew Howroyd_, Nov 17 2017

%e T(3,1)=3 and T(3,2)=1 because in the graphs (AB,BC,CA), (AB,AC), (AB,BC) and (AC,BC) the distances from A to B are 1, 1, 1 and 2, respectively.

%e Triangle starts:

%e 1;

%e 3, 1;

%e 16, 6, 1;

%e 105, 41, 9, 1;

%e 768, 306, 75, 12, 1;

%e ...

%p L:=proc(p,q,r) options operator, arrow: sum(binomial(q, i)*binomial(r+p-1-i, r-1), i=0..min(p,q)) end proc: T:=proc(n,k) options operator, arrow: k*L(n-k-1, 3*n-k-4, n-1)/(n-1) end proc: for n from 2 to 10 do seq(T(n,k),k=1..n-1) end do; # yields sequence in triangular form

%t t[n_, k_] := k*L[n - k - 1, 3*n - k - 4, n-1]/(n-1); L[p_, q_, r_] := Sum[ Binomial[q, i]*Binomial[r + p - 1 - i, r-1], {i, 0, Min[p, q]}]; Flatten[ Table[ t[n, k], {n, 2, 10}, {k, 1, n-1}]] (* _Jean-François Alcover_, Oct 05 2011, Oct 05 2011, after Maple *)

%o (PARI)

%o T(n,k)=k*sum(i=0, min(n-k-1, 3*n-k-4), binomial(3*n-k-4, i)*binomial(2*n-k-i-3, n-2))/(n-1);

%o for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ _Andrew Howroyd_, Nov 17 2017

%Y Cf. A085614, A143020, A007297.

%K nonn,tabl

%O 2,2

%A _Emeric Deutsch_, Jul 30 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 13:05 EDT 2024. Contains 372552 sequences. (Running on oeis4.)