Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 08 2022 08:45:37
%S 1,41,661,5741,33001,142001,494341,1465661,3833941,9073501,19789001,
%T 40328641,77620661,142282141,250054001,423621001,694880441,1107728161,
%U 1721435341,2614694501,3890418001,5681377241,8156775661,11529853541
%N Crystal ball sequence for the A4 x A4 lattice.
%C The A_4 lattice consists of all vectors v = (a,b,c,d,e) in Z^5 such that a+b+c+d+e = 0. The lattice is equipped with the norm ||v|| = 1/2*(|a| + |b| + |c| + |d| + |e|). Pairs of lattice points (v,w) in the product lattice A_4 x A_4 have norm ||(v,w)|| = ||v|| + ||w||. Then the k-th term in the crystal ball sequence for the A_4 x A_4 lattice gives the number of such pairs (v,w) for which ||(v,w)|| is less than or equal to k.
%H R. Bacher, P. de la Harpe and B. Venkov, <a href="http://archive.numdam.org/ARCHIVE/AIF/AIF_1999__49_3/AIF_1999__49_3_727_0/AIF_1999__49_3_727_0.pdf">Séries de croissance et séries d'Ehrhart associées aux réseaux de racines</a>, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36, 84,-126,126,-84,36,-9,1).
%F a(n) = (35*n^8 +140*n^7 +630*n^6 +1400*n^5 +2595*n^4 +3020*n^3 +2500*n^2 +1200*n +288)/288 = 5*n*(n + 1)*(n^2 + n + 2)*(7*n^4 + 14*n^3 + 77*n^2 + 70*n + 120)/288 + 1.
%F O.g.f. : 1/(1-x)*[Legendre_P(4,(1+x)/(1-x))]^2.
%F Apery's constant zeta(3) = (1+1/2^3+1/3^3+1/4^3) + Sum {n = 1..inf} 1/(n^3*a(n-1)*a(n)).
%F G.f.: (1+16*x+36*x^2+16*x^3+x^4)^2/(1-x)^9. [_Colin Barker_, Mar 16 2012]
%F a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8. - _Vincenzo Librandi_, Dec 16 2015
%p p := n -> (35*n^8 +140*n^7 +630*n^6 +1400*n^5 +2595*n^4 +3020*n^3 +2500*n^2 +1200*n +288)/288: seq(p(n), n = 0..24);
%t LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 41, 661, 5741, 33001, 142001, 494341, 1465661, 3833941}, 25] (* _Vincenzo Librandi_, Dec 16 2015 *)
%o (Python)
%o A143010_list, m = [], [4900, -14700, 17500, -10500, 3340, -540, 40, 0, 1]
%o for _ in range(10**2):
%o A143010_list.append(m[-1])
%o for i in range(8):
%o m[i+1] += m[i] # _Chai Wah Wu_, Dec 15 2015
%o (Magma) [5*n*(n+1)*(n^2+n+2)*(7*n^4+14*n^3+77*n^2+70*n+120)/288+1: n in [0..30]]; // _Vincenzo Librandi_, Dec 16 2015
%Y Cf. A143007 (row 4), A143008, A143009, A143011.
%K easy,nonn
%O 0,2
%A _Peter Bala_, Jul 22 2008