login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143000
a(0) = 0, a(1) = 1, a(n+1) = 3*(2*n+1)*a(n) + n^4*a(n-1).
3
0, 1, 9, 151, 3900, 143956, 7188048, 466900848, 38269041408, 3864146985216, 471339558835200, 68335862058777600, 11616056962961817600, 2288216707872948633600, 517111756256861311795200
OFFSET
0,3
COMMENTS
This is the case m = 1 of the general recurrence a(0) = 0, a(1) = 1, a(n+1) = (2*m+1)*(2*n+1 )*a(n) + n^4*a(n-1) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of the series sum {k = 1..inf} (-1)^(k+1)/k^2 for the constant 1/2*zeta(2). For other cases see A142999 (m=0), A143001 (m=2) and A143002 (m=3).
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
FORMULA
a(n) = n!^2*p(n)*sum {k = 1..n} (-1)^(k+1)/(k^2*p(k-1)*p(k)), where p(n) = n^2+n+1. Recurrence: a(0) = 0, a(1) = 1, a(n+1) = 3*(2*n+1)*a(n) + n^4*a(n-1). The sequence b(n):= n!^2*p(n) satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 3. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(3+ 1^4/(9+ 2^4/(15+ 3^4/(21+...+ (n-1)^4/(3*(2*n-1)))))), for n >=2. Lim n -> infinity a(n)/b(n) = sum {k = 1..inf} (-1)^(k+1)/(k^2*(1+k^2+k^4)) = 1/(3+ 1^4/(9+ 2^4/(15+ 3^4/(21+...+ n^4/(3*(2*n+1)+...))))) = 1/2*(zeta(2)-1). The final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Corollary to Entry 30].
MAPLE
p := n -> n^2+n+1: a := n -> n!^2*p(n)*sum ((-1)^(k+1)/(k^2*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 0..20)
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(6n-3)a[n-1]+(n-1)^4 a[n-2]}, a, {n, 15}] (* Harvey P. Dale, Jun 08 2014 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Jul 18 2008
STATUS
approved