Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Jun 19 2024 01:51:46
%S 0,1,3,31,460,12076,420336,21114864,1325949696,109027627776,
%T 10771080883200,1316468976307200,187978181665996800,
%U 31997755234356019200,6232784237890147123200,1409976507981835100160000,359243973790625586216960000,104259271562188189469245440000
%N a(0) = 0, a(1) = 1; for n > 1, a(n+1) = (2*n + 1)*a(n) + n^4*a(n-1).
%C This is the case m = 0 of the general recurrence a(0) = 1, a(1) = 1, a(n+1) = (2*m + 1)*(2*n + 1)*a(n) + n^4*a(n-1) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of the series Sum_{k >= 1} (-1)^(k+1)/k^2 for the constant 1/2*zeta(2). For other cases see A143000 (m = 1), A143001 (m = 2) and A143002 (m = 3).
%C The solution to the general recurrence may be expressed as a sum: a(n) = n!^2*p_m(n)*Sum_{k = 1..n} (-1)^(k+1)/(k^2*p_m(k-1)*p_m(k)), where p_m(x) := Sum_ {k = 0..m} C(m,k)*C(x,k)*C(x+k,k). Note that the polynomial q_m(x) := Sum_{k = 0..m} C(m,k)*C(m+k,k)*C(x,k), obtained by interchanging the roles of m and x, may be variously described as the Ehrhart polynomial of the polytope formed from the convex hull of a root system of type A_m, the polynomial that generates the crystal ball sequence for the A_m lattice [Bacher et al.], or the discrete Chebyshev polynomial D_m(N;x) at N = -1 [Gogin & Hirvensalo]. Compare with the comments in A142995.
%C The first few values are p_0(x) = 1, p_1(x) = x^2 + x + 1, p_2(x) = (x^4 + 2*x^3 + 7*x^2 + 6*x + 4)/4 and p_3(x) = (x^6 + 3*x^5 + 22*x^4 + 39*x^3 + 85*x^2 + 66*x + 36)/36.
%C The polynomial p_m(x) is the unique polynomial solution of the difference equation (x + 1)^2*f(x+1) - x^2*f(x-1) = (2*m + 1)*(2*x + 1)*f(x), normalized so that f(0) = 1. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane; that is, the polynomials p_m(x-1), m = 1, 2, 3, ..., satisfy a Riemann hypothesis (adapt the proof of the lemma on p.4 of [BUMP et al.]).
%C The general recurrence in the first paragraph above has a second solution b(n) = (n!^2)*p_m(n) with initial conditions b(0) = 1, b(1) = 2*m + 1. Hence the behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(k^2*p_m(k-1)*p_m(k)) = 1/((2*m + 1) + 1^4/(3*(2*m + 1) + 2^4/(5*(2*m + 1) + ... + n^4/(((2*n + 1)*(2*m + 1) + ...)))) = (1/2)*Sum_{k >= 1} 1/(m + k)^2. The final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Corollary to Entry 30].
%C For results of a similar nature for the constants e, log(2), zeta(2) and zeta(3) see A000522, A142979, A142995 and A143003 respectively.
%D Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
%H Vincenzo Librandi, <a href="/A142999/b142999.txt">Table of n, a(n) for n = 0..200</a>
%H R. Bacher, P. de la Harpe and B. Venkov, <a href="https://doi.org/10.5802/aif.1689">Séries de croissance et polynômes d'Ehrhart associées aux réseaux de racines</a>, Annales de l'Institut Fourier, Tome 49 (1999) no. 3, pp. 727-762.
%H R. Bacher, P. de la Harpe and B. Venkov, <a href="https://doi.org/10.1016/S0764-4442(97)83542-2">Séries de croissance et séries d'Ehrhart associées aux réseaux de racines</a>, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
%H D. Bump, K. Choi, P. Kurlberg and J. Vaaler, <a href="http://www.cecm.sfu.ca/~choi/paper/lrh.pdf">A local Riemann hypothesis, I</a>, Math. Zeit. 233, (2000), 1-19.
%H N. Gogin and M. Hirvensalo, <a href="http://tucs.fi/publications/attachment.php?fname=TR819.pdf">On the generating function of discrete Chebyshev polynomials</a>, Turku Centre for Computer Science Technical Report No. 819, (2007), 1-8.
%F a(n) = (n!^2) * Sum_{k = 1..n} (-1)^(k+1)/k^2.
%F Recurrence: a(0) = 0, a(1) = 1, a(n+1) = (2*n + 1)*a(n) + (n^4)*a(n-1).
%F The sequence b(n) := n!^2 satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 1. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(1 + 1^4/(3 + 2^4/(5 + 3^4/(7 + ... + (n - 1)^4/(2*n - 1))))), for n >= 2.
%F Limit_{n -> oo} a(n)/b(n) = 1/(1 + 1^4/(3 + 2^4/(5 + 3^4/(7 + ... + n^4/((2*n + 1) + ...))))) = Sum_{k >= 1} (-1)^(k+1)/k^2 = 1/2*zeta(2).
%F Sum_{n>=0} a(n) * x^n / (n!)^2 = -polylog(2,-x) / (1 - x). - _Ilya Gutkovskiy_, Jul 15 2020
%p a := n -> n!^2*add ((-1)^(k+1)/k^2, k = 1..n): seq(a(n), n = 0..20);
%t f[k_] := (k^2) (-1)^(k + 1)
%t t[n_] := Table[f[k], {k, 1, n}]
%t a[n_] := SymmetricPolynomial[n - 1, t[n]]
%t Table[a[n], {n, 1, 18}] (* A142999 signed *)
%t (* _Clark Kimberling_, Dec 30 2011 *)
%t RecurrenceTable[{a[0]==0,a[1]==1,a[n]==(2(n-1)+1)a[n-1]+(n-1)^4 a[n-2]},a,{n,20}] (* _Harvey P. Dale_, Apr 26 2014 *)
%Y Cf. A000522, A142979, A142995, A143000, A143001, A143002, A143003.
%K nonn,easy
%O 0,3
%A _Peter Bala_, Jul 18 2008
%E a(0)=0 added by _Vincenzo Librandi_, Apr 27 2014