login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fifth column (m=4) of triangle A142963 divided by 16=2^4.
5

%I #14 Jul 24 2024 09:47:40

%S 1,179,5280,82610,919615,8284857,64730022,457217400,2999230965,

%T 18608607535,110625457964,636103699038,3562753619915,19541111960965,

%U 105392471360850,560747327119908,2950726075955265,15387821226034875,79656442803398680,409857988825489610

%N Fifth column (m=4) of triangle A142963 divided by 16=2^4.

%F a(n) = A142963(n+5,3)/2^4.

%F From _Johannes W. Meijer_, Feb 20 2009: (Start)

%F a(n) = 35a(n-1) - 560a(n-2) + 5432a(n-3) - 35714a(n-4) + 168542a(n-5) - 589632a(n-6) + 1556776a(n-7) - 3126949a(n-8) + 4777591a(n-9) - 5506936a(n-10) + 4703032a(n-11) - 2881136a(n-12) + 1195632a(n-13) - 300672a(n-14) + 34560a(n-15).

%F a(n) = (1155/8) + (472/3)*n - 5544*2^n + (120285/4)*3^n - 49280*4^n + (196875/8)*5^n - 64*2^n*n^3 - 864*2^n*n^2 - 3824*2^n*n + (187/3)*n^2 + 1215*3^n*n^2 + 12150*3^n*n - 8960*4^n*n + (32/3)*n^3 + (2/3)*n^4.

%F G.f.: (1 + 144*z - 425*z^2 - 7382*z^3 + 48451*z^4 - 96764*z^5 - 2559*z^6 + 257002*z^7 - 312444*z^8 + 88344*z^9 + 30240*z^10)/((1-z)^5*(1-2*z)^4*(1-3*z)^3*(1-4*z)^2*(1-5*z)).

%F (End)

%Y Column m=3: 8*A142966.

%Y From _Johannes W. Meijer_, Feb 20 2009: (Start)

%Y Cf. A156925.

%Y Equals A156920(n+4,4).

%Y Equals A156919(n+4,4)/2^n.

%Y (End)

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Sep 15 2008