login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, coefficients of the polynomials P(k, x) = (1/2) Sum_{p=0..k-1} Stirling2(k, p+1)*x^p*(1-4*x)^(k-1-p)*(2*p+2)!/(p+1)!.
15

%I #58 Aug 28 2019 15:23:22

%S 1,1,2,1,10,4,1,30,72,8,1,74,516,464,16,1,166,2584,7016,2864,32,1,354,

%T 10740,64240,84480,17376,64,1,734,40008,450280,1321760,949056,104704,

%U 128,1,1498,139108,2681296,14713840,24198976,10223488,629248,256,1,3030,462264,14341992

%N Triangle read by rows, coefficients of the polynomials P(k, x) = (1/2) Sum_{p=0..k-1} Stirling2(k, p+1)*x^p*(1-4*x)^(k-1-p)*(2*p+2)!/(p+1)!.

%C Previous name: Table of coefficients of row polynomials of certain o.g.f.s.

%C The o.g.f.s G(k, x) for the k-family of sequences S(k, n):= Sum_{p=0..n} p^k*binomial(2*p, p)*binomial(2*(n-p), n-p), k=0,1,... (convolution of two sequences involving the central binomial coefficients) are 1/(1-4*x) for k=0 and 2*x*P(k, x)/(1-4*x)^(k+1) for k=1,2,..., with the row polynomials P(k, x) = Sum_{m=0..k-1} a(n,m)*x^m).

%C The author was led to compute the sums S(k, n) by a question asked by M. Greiter, Jun 27 2008.

%C In order to keep the index k>=1 of Sigma(k, n) also for the polynomials P(k, x), their degree is then k-1.

%H Vincenzo Librandi, <a href="/A142963/b142963.txt">Table of n, a(n) for n = 1..210</a>

%H Wolfdieter Lang, <a href="/A142963/a142963_1.txt">First 10 rows and more.</a>

%H L. Liu, Y. Wang, <a href="https://arxiv.org/abs/math/0509207">A unified approach to polynomial sequences with only real zeros</a>, arXiv:math/0509207v5 [math.CO], 2005-2006.

%F G(k, x) = Sum_{p=0..k} S2(k, p)*((2*p)!/p!)*x^p/(1-4*x)^(p+1), k >= 0 (here k >= 1), with the Stirling2 triangle S2(k, p):=A048993(k, p). (Proof from the product of the o.g.f.s of the two convoluted sequences and the normal ordering (x^d_x)^k = Sum_{p=0..k} S2(k, p)*x^p*d_x^p, with the derivative operator d_x.)

%F a(k,m) = [x^m]P(k, x) = [x^m] ((1-4*x)^(k+1))*G(k,x)/(2*x), k>=1, m=0,1,...,k-1.

%F For the triangle coefficients the following relation holds: T(n,m) = (m+1)*T(n-1,m) + (4*n-4*m-2)*T(n-1,m-1) with T(n,m=0) = 1 and T(n,m=n-1) = 2^(n-1), n >= 1 and 0 <= m <= n-1. - _Johannes W. Meijer_, Feb 20 2009

%F From _Peter Bala_, Jan 18 2018: (Start)

%F (x*d/dx)^n (1/(sqrt(1 - 4*x)) = 2*x*P(n,x)/sqrt(1 - 4*x)^(n+1/2) for n >= 1.

%F x*P(n,x)/(1 - 4*x)^(n+1/2) = (1/2)*Sum_{k >= 1} binomial(2*k,k)* k^n*x^k for n >= 1.

%F P(n+1,x) = ((4*n - 2)*x + 1)*P(n,x) - x*(4*x - 1)*d/dx(P(n,x)).

%F Hence the polynomial P(n,x) has all real zeros by Liu et al., Theorem 1.1, Corollary 1.2. (End)

%e Triangle starts:

%e [1]

%e [1, 2]

%e [1, 10, 4]

%e [1, 30, 72, 8]

%e [1, 74, 516, 464, 16]

%e [1, 166, 2584, 7016, 2864, 32]

%e [1, 354, 10740, 64240, 84480, 17376, 64]

%e [1, 734, 40008, 450280, 1321760, 949056, 104704, 128]

%e ...

%e P(3,x) = 1+10*x+4*x^2.

%e G(3,x) = 2*x*(1+10*x+4*x^2)/(1-4*x)^4.

%p A142963 := proc(n,m): if n=m+1 then 2^(n-1); elif m=0 then 1 ; elif m<0 or m>n-1 then 0; else (m+1)*procname(n-1, m)+(4*n-4*m-2)*procname(n-1, m-1); end if; end proc: seq(seq(A142963(n,m), m=0..n-1), n=1..9); # _Johannes W. Meijer_, Sep 28 2011

%p # Alternatively (assumes offset 0):

%p p := (n,x) -> (1/2)*add(Stirling2(n+1,k+1)*x^k*(1-4*x)^(n-k)*(2*k+2)!/(k+1)!, k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n,x), x) od;

%p # _Peter Luschny_, Jun 18 2017

%t t[_, 0] = 1; t[n_, m_] /; m == n-1 := 2^m; t[n_, m_] := (m+1)*t[n-1, m] + (4*n-4*m-2)*t[n-1, m-1]; Table[t[n, m], {n, 1, 10}, {m, 0, n-1}] // Flatten (* _Jean-François Alcover_, Jun 21 2013, after _Johannes W. Meijer_ *)

%Y Left hand column sequences 2*A142964, 4*A142965, 8*A142966, 16*A142968.

%Y Row sums A142967.

%Y From _Johannes W. Meijer_, Feb 20 2009: (Start)

%Y A156919 and this sequence can be mapped onto A156920.

%Y Cf. A156921, A156925, A156927, A156933.

%Y Right hand column sequences 2^n*A000340, 2^n*A156922, 2^n*A156923, 2^n*A156924. (End)

%Y Cf. A142961, A142962.

%K nonn,easy,tabl

%O 1,3

%A _Wolfdieter Lang_, Sep 15 2008

%E Minor edits by _Johannes W. Meijer_, Sep 28 2011

%E A more precise name by _Peter Luschny_, Jun 18 2017

%E Name reformulated with offset corrected, edited by _Wolfdieter Lang_, Aug 23 2019