OFFSET
1,2
FORMULA
Let E(n, x) = Sum_{j=0..k} A173018(n, k)*x^k and E'(n, x) = (d/dx) E(x, n). Then T(n, k) = [x^(k-1)] E'(n+1, x).
EXAMPLE
Triangle T(n, k) starts:
{ 1};
{ 4, 2};
{ 11, 22, 3};
{ 26, 132, 78, 4};
{ 57, 604, 906, 228, 5};
{ 120, 2382, 7248, 4764, 600, 6};
{ 247, 8586, 46857, 62476, 21465, 1482, 7};
{ 502, 29216, 264702, 624760, 441170, 87648, 3514, 8};
{1013, 95680, 1365576, 5241416, 6551770, 2731152, 334880, 8104, 9}.
MAPLE
T := (n, k) -> k * combinat:-eulerian1(n+1, k):
for n from 1 to 9 do seq(T(n, k), k = 1..n) od; # Peter Luschny, Feb 07 2023
MATHEMATICA
T[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}];
Table[D[Sum[T[n, k]*x^k, {k, 0, n - 1}], x], {n, 1, 10}];
Table[CoefficientList[D[Sum[T[n, k]*x^k, {k, 0, n - 1}], x], x], {n, 1, 10}];
Flatten[%]
(* Alternative: *) Needs["Combinatorica`"]
Flatten[Table[k*Eulerian[n+1, k], {n, 1, 9}, {k, 1, n}]] (* Peter Luschny, Feb 07 2023 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula and Gary W. Adamson, Sep 24 2008
EXTENSIONS
Edited by Peter Luschny, Feb 07 2023
STATUS
approved