login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142353
Primes of the form n/(c(n)-r(n)), where c(n)=n-th composite and r(n)=n-th nonprime.
0
2, 5, 5, 7, 11, 11, 17, 23, 17, 13, 19, 31, 37, 19, 41, 43, 47, 59, 61, 43, 71, 73, 79, 83, 61, 47, 97, 103, 73, 113, 83, 127, 131, 137, 149, 151, 157, 163, 167, 173, 191, 193, 211, 149, 227, 229, 157, 239, 241, 167, 257, 269, 271, 281, 293, 197, 307, 311, 211, 331
OFFSET
1,1
EXAMPLE
If n=6, then 6/(c(6)-r(6))=6/(12-9)=2=a(1).
If n=33, then 33/(c(33)-r(33))=33/(49-46)=11=a(2).
If n=34, then 34/(c(34)-r(34))=34/(50-48)=17=a(3).
If n=46, then 46/(c(46)-r(46))=46/(65-63)=23=a(4).
If n=51, then 51/(c(51)-r(51))=51/(72-69)=17=a(5).
If n=52, then 52/(c(52)-r(52))=52/(74-70)=13=a(6), etc.
MAPLE
A141468 := proc(n) option remember ; if n = 1 then 0; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) ; fi; od: fi; end: A002808 := proc(n) option remember ; A141468(n+2) ; end: for n from 1 to 3000 do p := n/(A002808(n)-A141468(n)) ; if type(p, 'integer') then if isprime(p) then printf("%d, ", p) ; fi; fi; od: # R. J. Mathar, Jan 23 2009
CROSSREFS
Sequence in context: A023850 A175649 A240497 * A161180 A101858 A329813
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected and extended by R. J. Mathar, Jan 23 2009
STATUS
approved