login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142347
Nonprimes of the form (p(n)+r(n))/2, where p(n)=n-th prime and r(n)=n-th nonprime.
1
1, 22, 32, 42, 58, 66, 88, 99, 104, 114, 119, 144, 166, 196, 200, 214, 221, 253, 279, 287, 291, 300, 314, 326, 345, 352, 372, 400, 407, 418, 426, 442, 454, 472, 482, 502, 506, 513, 538, 556, 566, 573, 580, 590, 602, 612, 618, 625, 630, 669, 698, 708, 717, 725
OFFSET
1,2
LINKS
EXAMPLE
If n=1, then (p(1)+r(1))/2=(2+0)/2=1=a(1).
If n=10, then (p(10)+r(10))/2=(29+15)/2=22=a(2).
If n=14, then (p(14)+r(14))/2=(43+21)/2=32=a(3).
If n=17, then (p(17)+r(17))/2=(59+25)/2=42=a(4).
If n=23, then (p(23)+r(23))/2=(83+33)/2=58=a(5), etc.
MAPLE
From R. J. Mathar, Apr 28 2010: (Start)
A141468 := proc(n) option remember; if n <= 2 then n-1; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do; end if; end proc:
for n from 1 to 300 do c := (ithprime(n)+A141468(n))/2 ; if type(c, 'integer') then if not isprime(c) then printf("%d, ", c) ; end if; end if; end do: (End)
MATHEMATICA
Module[{nn=1500, pr, np, len}, pr=Prime[Range[PrimePi[nn]]]; np=Complement[ Range[ 0, nn], pr]; len=Min[Length[pr], Length[np]]; Select[Total[#]/2&/@Thread[{Take[pr, len], Take[np, len]}], IntegerQ[#]&&!PrimeQ[#]&]] (* Harvey P. Dale, Jul 28 2014 *)
CROSSREFS
Sequence in context: A179282 A106555 A106557 * A217059 A121019 A167337
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected (119 inserted, 239 removed etc.) by R. J. Mathar, Apr 28 2010
STATUS
approved