Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Nov 10 2020 03:23:01
%S 1,6,12,15,16,20,24,27,33,39,42,45,45,50,52,54,55,63,63,66,70,70,70,
%T 78,81,84,86,102,105,108,110,115,117,117,118,121,121,132,133,138,141,
%U 146,148,150,156,158,165,168,168,171,180,180,182,198,203,205,205,210,210
%N Nonprimes of the form (p(2*n)-p(n))/4, where p(n)=n-th prime.
%C Terms are in order of n. The sequence has repetitions and is not monotonic: e.g. a(71) = 249 and a(72) = 248. - _Robert Israel_, Nov 09 2020
%H Robert Israel, <a href="/A142338/b142338.txt">Table of n, a(n) for n = 1..10000</a>
%e If n=2, then (p(2*2)-p(2))/4=(7-3)/4=1=a(1).
%e If n=6, then (p(2*6)-p(6))/4=(37-13)/4=6=a(2).
%e If n=11, then (p(2*11)-p(11))/4=(79-31)/4=12=a(3).
%e If n=13, then (p(2*13)-p(13))/4=(101-41)/4=15=a(4).
%e If n=14, then (p(2*14)-p(14))/4=(107-43)/4=16=a(5), etc.
%p q:= 1: p:= 1: count:= 0: R:= NULL:
%p while count < 100 do
%p q:= nextprime(q); p:= nextprime(nextprime(p));
%p v:= (p-q)/4;
%p if v::integer and not isprime(v) then count:= count+1; R:= R, v fi
%p od:
%p R; # _Robert Israel_, Nov 09 2020
%Y Cf. A000040, A072473, A141468.
%K nonn
%O 1,2
%A _Juri-Stepan Gerasimov_, Sep 18 2008
%E 59 and 87 removed by _R. J. Mathar_, Oct 04 2008