login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141860
Primes congruent to 2 mod 15.
5
2, 17, 47, 107, 137, 167, 197, 227, 257, 317, 347, 467, 557, 587, 617, 647, 677, 797, 827, 857, 887, 947, 977, 1097, 1187, 1217, 1277, 1307, 1367, 1427, 1487, 1607, 1637, 1667, 1697, 1787, 1847, 1877, 1907, 1997, 2027, 2087, 2207, 2237, 2267, 2297, 2357, 2417
OFFSET
1,1
COMMENTS
2, and primes congruent to 17 mod 30. - Robert Israel, Jan 19 2016
LINKS
FORMULA
{2} UNION A039949. - R. J. Mathar, Jul 20 2008
MAPLE
select(isprime, [2, seq(i, i=17..1000, 30)]); # Robert Israel, Jan 19 2016
MATHEMATICA
Select[Prime[Range[400]], MemberQ[{2}, Mod[#, 15]]&] (* Vincenzo Librandi, Aug 15 2012 *)
Select[Range[2, 2500, 15], PrimeQ] (* Harvey P. Dale, Dec 08 2012 *)
PROG
(Magma) [ p: p in PrimesUpTo(5000) | p mod 15 eq 2 ]; // Vincenzo Librandi, Apr 19 2011
(PARI) lista(nn) = for(n=0, nn, if(ispseudoprime(p=15*n+2), print1(p, ", "))); \\ Altug Alkan, Jan 19 2016
CROSSREFS
Sequence in context: A134784 A023256 A073775 * A105691 A360416 A192345
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 11 2008
STATUS
approved