login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = (2*k - n)*A008292(n,k) with T(n,n) = n, 0 <= k <= n, where A008292 is the triangle of Eulerian numbers.
0

%I #19 Oct 06 2018 03:58:50

%S 0,-1,1,-2,0,2,-3,-4,1,3,-4,-22,0,2,4,-5,-78,-66,26,3,5,-6,-228,-604,

%T 0,114,4,6,-7,-600,-3573,-2416,1191,360,5,7,-8,-1482,-17172,-31238,0,

%U 8586,988,6,8,-9,-3514,-73040,-264702,-156190,88234,43824,2510,7,9,-10

%N Triangle read by rows: T(n,k) = (2*k - n)*A008292(n,k) with T(n,n) = n, 0 <= k <= n, where A008292 is the triangle of Eulerian numbers.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerianNumber.html">Eulerian Number</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Eulerian_number">Eulerian number</a>

%F Sum_{k=0..n} T(n,k) = A005096(n), n > 0.

%F From _Franck Maminirina Ramaharo_, Oct 06 2018: (Start)

%F T(n,k) = (2*k - n)*Sum_{j=0..k} (-1)^j*(k - j + 1)^n*binomial(n + 1, j) for 0 <= k <= n - 1 and T(n,n) = n.

%F T(2*n-1,n-1) = -A025585(n).

%F T(2*n,n-1) = -A177042(n). (End)

%e Triangle begins:

%e 0;

%e -1, 1;

%e -2, 0, 2;

%e -3, -4, 1, 3;

%e -4, -22, 0, 2, 4;

%e -5, -78, -66, 26, 3, 5;

%e -6, -228, -604, 0, 114, 4, 6;

%e -7, -600, -3573, -2416, 1191, 360, 5, 7;

%e -8, -1482, -17172, -31238, 0, 8586, 988, 6, 8;

%e -9, -3514, -73040, -264702, -156190, 88234, 43824, 2510, 7, 9;

%e ...

%p T:= proc(n,k) `if`(n=k,n,(2*k-n)*add((-1)^j*(k-j+1)^n*binomial(n+1,j),j=0..k)); end proc: seq(seq(T(n,k),k=0..n),n=0..10); # _Muniru A Asiru_, Oct 06 2018

%p T := (n, k) -> `if`(n = k, n, (2*k - n)*combinat:-eulerian1(n,k)):

%p seq(seq(T(n,k), k=0..n), n=0..9); # _Peter Luschny_, Oct 06 2018

%t T[n_, k_] = If[n == k, n, (2*k - n)*Sum[(-1)^j*(k - j + 1)^n*Binomial[n + 1, j], {j, 0, k}]];

%t Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}]//Flatten

%o (Maxima) T(n, k) := if n = k then n else (2*k - n)*sum((-1)^j*(k - j + 1)^n*binomial(n + 1, j), j, 0, k)$

%o tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$ /* _Franck Maminirina Ramaharo_, Oct 05 2018 */

%Y Cf. A008292.

%K tabl,sign,easy

%O 0,4

%A _Roger L. Bagula_, Sep 09 2008

%E Edited, new name and offset corrected by _Franck Maminirina Ramaharo_, Oct 06 2018