%I #44 Apr 22 2022 05:39:02
%S 16,1,12,29,1,61,81,1,113,131,2,163,50,2,215,233,2,34,285,3,317,335,2,
%T 367,182,3,419,72,4,469,489,3,93,539,4,571,591,3,185,641,5,673,131,5,
%U 725,240,6,148,795,5,827,845,3,877,897,7,929,186,6,338,656,7,240,1049,8,1081,393,5,1133,1151,8,542,245,7,1235,1253
%N Number of isomorphism classes of (2n+1)-reflexive polygons.
%C There are no l-reflexive polygons for even index l.
%H Andrey Zabolotskiy, <a href="/A141682/b141682.txt">Table of n, a(n) for n = 0..99</a> (from the Graded Ring Database)
%H Dimitrios I. Dais, <a href="https://arxiv.org/abs/1806.08351">On the Twelve-Point Theorem for l-Reflexive Polygons</a>, arXiv:1806.08351 [math.CO], 2018.
%H A. M. Kasprzyk and B. Nill, <a href="https://arxiv.org/abs/1107.4945">Reflexive polytopes of higher index and the number 12</a>, arXiv:1107.4945 [math.AG], 2011.
%H A. M. Kasprzyk and B. Nill, <a href="http://www.grdb.co.uk/forms/toriclr2">Toric l-reflexive surfaces</a> at Graded Ring Database.
%F It seems that for n > 2, a(n) = 17*n - k where k = 21, 22, 23, 24 iff 2*n+1 is a prime from A068228, A068229, A040117, A068231, respectively. - _Andrey Zabolotskiy_, Apr 21 2022
%e a(0)=16 equals the number of isomorphism classes of (1-)reflexive polygons, A090045(2).
%Y Cf. A090045.
%K nonn
%O 0,1
%A _Benjamin Nill_, Jul 02 2012